AUTOSAR

Document Title

Specification of SOME/IP
Transformer

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 660
Document Status published

Part of AUTOSAR Standard

Classic Platform

Part of Standard Release

R20-11

Document Change History

Date Release | Changed by Description

e Added call/response context to Client
Server requirements

e Constraint added for data type of
length field of variable Strings

e Added E_E2E Error to Table 7.11:
Return Codes

e Requirement added in case
unvailability of optional member in
the received serialized byte stream

AUTOSAR e Reworked E2E communication
2020-11-30 | R20-11 Release

Management | o sizeOfStringLengthField introduced

protection for methods

for the size of the length field for
dynamic length strings

e sizeOfArrayLengthField introduced
for the size of the length field for
variable size arrays

e Fixed design issues with E2E
communication protection for
methods

e Editorial Changes

AUTOSAR

2019-11-28

R19-11

AUTOSAR
Release
Management

o Extended Serialization for Data

Structures in SOME/IP with
tag/length/value encoding set to valid

e Removed *_ACK message types
e replaced

implementsSOMEIPStringHandling
(in class
SOMEIPTransformationSignalProps)
with
implementsLegacyStringSerialization
Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
Changed Document Status from
Final to published

2018-10-31

4.4.0

AUTOSAR
Release
Management

Checking for length of received
dynamic length strings

Extended Serialization for Data
Structures in SOME/IP with
tag/length/value encoding

Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2017-12-08

4.3.1

AUTOSAR
Release
Management

Bugfixes in serialization of strings
and data with variable size

e Signatures improved
e Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2016-11-30

4.3.0

AUTOSAR
Release
Management

Sizes of length fields can be
configured independently from each
other

e Support of union data types
e Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

AUTOSAR

e Size of length fields is configurable
e External trigger events are

communciated as fire-and-forget

Management

AUTOSAR methods
2015-07-31 | 4.2.2 Release e Autonomous error reactions of
Management SOME/IP transformer
e Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
AUTOSAR
2014-10-31 | 4.21 Release Initial Release

AUTOSAR

Disclaimer

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Inputdocuments
3.2 Related standardsandnorms
3.3 Related specification o L L.

4 Constraints and assumptions

41 Limitations
4.2 Applicability to car domains . .

5 Dependencies to other modules

51 File structure
51.1 Code file structure . .
51.2 Header file structure .

6 Requirements Tracing

7 Functional specification
7.1 Definition of Identifiers

7.2 Specification of the SOME/IP on-wire format
7.2.1 Message Length Limitations
7.2.2 Endianess
7.2.3 Header

7.2.3.1 Message ID[32Dbit]
7.2.3.2 Length [32Dbit]
7.2.3.3 RequestID[32bit]
7.2.3.4 Protocol Version [8bit]
7.2.3.5 Interface Version [8bit]
7.2.3.6 Message Type [8bit]
7.2.3.7 ReturnCode [8bit]
7.2.3.8 Payload [variable size]
7.2.4 Serialization of Parameters and Data Structures
7.2.41 Basic Datatypes
7242 Structured Datatypes (structs)
7.2.4.3 Structured Datatypes and Arguments with Identifier
and optional Members

7.24.4 Strings
7.24.5 Arrays (fixed length)
7.2.4.6 Optional Parameters / Optional Elements
7.24.7 Dynamic Length Arrays / Variable Size Arrays
7.2.4.8 Bitfield
7.2.4.9 Union/Variant

10
10

11

11
11

12

12
12
12

13

AUTO SAR

7.3

7.4
7.5

Protocol specification

7.3.1
7.3.2
7.3.3
7.3.4

Client/Server Communication.
Sender/Receiver Communication.
Unqueued External TriggerEvents
ErrorHandling

7.3.4.1
7.3.4.2

ReturnCode
Communication Errors and Handling of Communica-
tionErrors

Reserved and special identifiers for SOME/IP and SOME/IP-SD.

Error Classification
DevelopmentErrors o oL
Runtime Errors
TransientFaults,
Production Errors
Extended ProductionErrors,

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5

8 API specification

8.1
8.2
8.3

8.4
8.5
8.6

Imported types
Type definitions
Function definitions Lo
SomelpXf_ExtractProtocolHeaderFields
SomelpXf_<transformerld>
SomelpXf_Inv_<transformerld>
SomelpXf_Init
SomelpXf Delnit. oo
SomelpXf_GetVersioninfo
Callback notifications
Scheduled functions
Expectedinterfaceso

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

9 Sequence diagrams

10 Configuration specification

A Referenced Meta Classes

B Features of SOME/IP not supported by AUTOSAR SOME/IP transformer

C Examples

C.1

Serialization of a Client/Server Operation.

C.11
C.1.2

Client
Server

AUTOSAR

1 Introduction and functional overview

This document specifies the Scalable service-Oriented MiddlewarE over IP
(SOME/IP) Transformer. This is a transformer which linearizes data with the SOME/IP
on-the-wire format and specifies an automotive/embedded mechanism for Clien-
t/Server communication.

The only valid abbreviation is SOME/IP. Other abbreviations (e.g. Some/IP) are wrong
and shall not be used.

The basic motivation to specify "yet another Client/Server and Sender/Receiver mech-
anism" instead of using an existing infrastructure/technology is the goal to have a tech-
nology that:

e Fulfills the hard requirements regarding resource consumption in an embedded
world

Is compatible through as many use-cases and communication partners as possi-
ble

Provides the features required by automotive use-cases

Is scalable from tiny to large platforms

Can be implemented on different operating system (i.e. AUTOSAR, GENIVI, and
OSEK) and even embedded devices without operating system

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
Transformer that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
The configuration and required data of a service instance another
Client-Service-Instance-Entry ECU offers shall be called Client-Service-Instance-Entry at the

ECU using this service (Client).

Field

a field represents a status and thus has a valid value at all times
on which getter, setter and notfier act upon.

Finding a service instance

to send a SOME/IP-SD message in order to find a needed ser-
vice instance.

Getter a Request/Response call that allows read access to a field.
a method, procedure, function, or subroutine that is called/in-
Method
voked
. sends out event message with a new value on change of the
Notifier :
value of the field.
Request a message of the client to the server invoking a method
R a message of the server to the client transporting results of a
esponse . .
method invocation
SD Service Discovery (see[2])
a logical combination of zero or more methods, zero or more
Service events, and zero or more fields (empty service is allowed, e.g.

for announcing non-SOME/IP services in SOME/IP-SD)

Service Instance

software implementation of the service interface, which can exist
more than once in the vehicle and more than once on an ECU

Service Interface

the formal specification of the service including its methods,
events, and fields

Setter

a Request/Response call that allows write access to a field.

SOME/IP

Scalable service-Oriented MiddlewarE over IP

AUTOSAR

3 Related documentation
3.1 Input documents

References

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Service Discovery
AUTOSAR_SWS_ServiceDiscovery

[38] General Specification of Transformers
AUTOSAR_ASWS TransformerGeneral

[4] Specification of Socket Adaptor
AUTOSAR_SWS_ SocketAdaptor

[5] Specification of RTE Software
AUTOSAR_SWS_RTE

[6] Requirements on AUTOSAR Features
AUTOSAR_RS Features

[7] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[8] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[9] System Template
AUTOSAR_TPS_SystemTemplate

[10] Requirements on Transformer
AUTOSAR_SRS_Transformer

[11] UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

[12] UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.ixt

[13] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[14] General Requirements on Basic Software Modules
AUTOSAR_SRS BSWGeneral

AUTOSAR

3.2 Related standards and norms

Not applicable.

3.3 Related specification

AUTOSAR provides a General Specification on Transformers [3, ASWS Transformer
General], which is also valid for SOME/IP Transformer.

Thus, the specification SWS Transformer General shall be considered as additional
and required specification for SOME/IP Transformer.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations
For the SOME/IP Transformer all general transformer limitations (see [3, ASWS Trans-
former General]) apply.
The SOME/IP transformer doesn’t implement the whole SOME/IP protocol:
e a partis implemented by [2, SWS Service Discovery]
e a partis implemented by [4, SWS Socket Adaptor]

e a part is currently not implemented in AUTOSAR. This is documented in Ap-
pendix B

[SWS_SomelpXf_CONSTR_0001] [In accordance with [SWS_SomelpXf_00245],
2(8*sizeof(data type of length field)) shall be larger than the number of elements given
by the size indicator multiplied by the size in bytes of each element (i.e., 1 for UTF-8
and 2 for UTF-16) and increased by the size in bytes required by the BOM.| (SRS _-

Xfrm_00101)

4.2 Applicability to car domains

The SOME/IP Transformer can be used for all domain applications when SOME/IP
Sender/Receiver or Client/Server communication is used.

AUTOSAR

5 Dependencies to other modules

The AUTOSAR RTE [5, SWS RTE] has to exist to execute the transformer.

5.1 File structure

5.1.1 Code file structure

The source code file structure is defined in the [3, ASWS Transformer General].

5.1.2 Header file structure

[SWS_SomelpXf_00136] [The header file SomeIpxf[_<Ie>].h shall be the main
include file for the SOME/IP transformer and include TransformerTypes.h and its
Module Interlink Header file SchM_<bsnp>_ [<vi>_<ai>] .h.

where

<Ie> is the optional implementation specific file name extension according [SWS_-
BSW_00103],

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte 07593] and [SWS_ -
Rte_07594],

<vi> is the vendor1d of the BSW module and

<ai>isthe vendorApiInfix of the BSW module.|(SRS_BSW_00346)

The file TransformerTypes.h contains the general transformer data types.

AUTOSAR

6 Requirements Tracing

The following table references the features specified in [6] and links to the fulfillments

of these.

Feature

Description

Satisfied by

[SRS_BSW_00159]

All modules of the
AUTOSAR Basic
Software shall
support a tool based
configuration

[SWS_SomelpXf_00185]

[SRS_BSW_00337]

Classification of
development errors

[SWS_SomelPxf_00184]

[SRS_BSW_00346]

All AUTOSAR Basic
Software Modules
shall provide at least
a basic set of
module files

[SWS_SomelpXf_00136]

[SRS_BSW_00404]

BSW Modules shall
support post-build
configuration

[SWS_SomelpXf_00183]

[SRS_BSW_00407]

Each BSW module
shall provide a
function to read out
the version
information of a
dedicated module
implementation

[SWS_SomelpXf_00180]
[SWS_SomelpXf_00181]
[SWS_SomelpXf_00182]

[SRS_BSW_00411]

All AUTOSAR Basic
Software Modules
shall apply a naming
rule for enabling/
disabling the
existence of the API

[SWS_SomelpXf_00180]
[SWS_SomelpXf_00181]
[SWS_SomelpXf_00182]

[SRS_BSW_00441]

Naming convention
for type, macro and
function

[SWS_SomelpXf_00183]

[SRS_Xfrm_00001]

A transformer shall
work on data given
by the Rte

[SWS_SomelpXf_00264]
[SWS_SomelpXf_00265]
[SWS_SomelpXf_00266]

AUTO SAR

[SRS_Xfrm_00002] A transformer shall [SWS_SomelpXf_00206]
provide fixed [SWS_SomelpXf_00207]
interfaces [SWS_SomelpXf_00208]

[SWS_SomelpXf_00209]
[SWS_SomelpXf_00210]
[SWS_SomelpXf_00211]
[SWS_SomelpXf_00296]
[SWS_SomelpXf_00297]
[SWS_SomelpXf_00298]
[SWS_SomelpXf_00299]
[SWS_SomelpXf_00301]
[SWS_SomelpXf_00302]
[SWS_SomelpXf_00303]
[SWS_SomelpXf_00304]
[SWS_SomelpXf_00305]
[SWS_SomelpXf_91001]

[SRS_Xfrm_00004] A transformer shall [SWS_SomelpXf_00264]
support error [SWS_SomelpXf_00265]
handling [SWS_SomelpXf_00266]

[SRS_Xfrm_00008] A transformer shall [SWS_SomelpXf_00001]
specify its output [SWS_SomelpXf_00002]
format [SWS_SomelpXf_00005]

[SWS_SomelpXf_00006]
[SWS_SomelpXf_00007]
[SWS_SomelpXf_00009]
[SWS_SomelpXf_00010]
[SWS_SomelpXf_00011]
[SWS_SomelpXf_00013]
[SWS_SomelpXf_00015]
[SWS_SomelpXf_00024]
[SWS_SomelpXf_00025]
[SWS_SomelpXf_00026]
[SWS_SomelpXf_00029]
[SWS_SomelpXf_00030]
[SWS_SomelpXf_00031]
[SWS_SomelpXf_00033]
[SWS_SomelpXf_00130]
[SWS_SomelpXf_00131]
[SWS_SomelpXf_00132]
[SWS_SomelpXf_00133]
[SWS_SomelpXf_00134]
[SWS_SomelpXf_00152]
[SWS_SomelpXf_00154]

AUTO SAR

[SWS_SomelpXf_00155]
[SWS_SomelpXf_00156]
[SWS_SomelpXf_00160]
[SWS_SomelpXf_00161]
[SWS_SomelpXf_00163]
[SWS_SomelpXf_00164]
[SWS_SomelpXf_00165]
[SWS_SomelpXf_00166]
[SWS_SomelpXf_00168]
[SWS_SomelpXf_00172]
[SWS_SomelpXf_00212]
[SWS_SomelpXf_00213]
[SWS_SomelpXf_00234]
[SWS_SomelpXf_00235]
[SWS_SomelpXf_00236]
[SWS_SomelpXf_00237]
[SWS_SomelpXf_00238]

[SRS_Xfrm_00101]

The SOME/IP
Transformer shall
define the
serialization of
atomic and
structured data
elements into linear
arrays

[SWS_SomelpXf_00016]
[SWS_SomelpXf_00017]
[SWS_SomelpXf_00034]
[SWS_SomelpXf_00036]
[SWS_SomelpXf_00037]
[SWS_SomelpXf_00042]
[SWS_SomelpXf_00053]
[SWS_SomelpXf_00054]
[SWS_SomelpXf_00055]
[SWS_SomelpXf_00056]
[SWS_SomelpXf_00057]
[SWS_SomelpXf_00058]
[SWS_SomelpXf_00059]
[SWS_SomelpXf_00060]
[SWS_SomelpXf_00069]
[SWS_SomelpXf_00070]
[SWS_SomelpXf_00072]
[SWS_SomelpXf_00076]
[SWS_SomelpXf_00088]
[SWS_SomelpXf_00098]
[SWS_SomelpXf_00099]
[SWS_SomelpXf_00151]
[SWS_SomelpXf_00169]
[SWS_SomelpXf_00216]

AUTO SAR

[SWS_SomelpXf_00217]
[SWS_SomelpXf_00218]
[SWS_SomelpXf_00219]
[SWS_SomelpXf_00220]
[SWS_SomelpXf_00221]
[SWS_SomelpXf_00222]
[SWS_SomelpXf_00223]
[SWS_SomelpXf_00224]
[SWS_SomelpXf_00225]
[SWS_SomelpXf_00226]
[SWS_SomelpXf_00227]
[SWS_SomelpXf_00234]
[SWS_SomelpXf_00235]
[SWS_SomelpXf_00236]
[SWS_SomelpXf_00237]
[SWS_SomelpXf_00238]
[SWS_SomelpXf_00239]
[SWS_SomelpXf_00240]
[SWS_SomelpXf_00241]
[SWS_SomelpXf_00242]
[SWS_SomelpXf_00243]
[SWS_SomelpXf_00244]
[SWS_SomelpXf_00245]
[SWS_SomelpXf_00246]
[SWS_SomelpXf_00247]
[SWS_SomelpXf_00248]
[SWS_SomelpXf_00249]
[SWS_SomelpXf_00250]
[SWS_SomelpXf_00251]
[SWS_SomelpXf_00252]
[SWS_SomelpXf _00253]
[SWS_SomelpXf_00254]
[SWS_SomelpXf_00256]
[SWS_SomelpXf_00257]
[SWS_SomelpXf_00258]
[SWS_SomelpXf_00259]
[SWS_SomelpXf_00260]
[SWS_SomelpXf_00262]
[SWS_SomelpXf_00263]
[SWS_SomelpXf_CONSTR_0001]

AUTO SAR

[SRS_Xfrm_00102]

The SOME/IP
Transformer shall
define a protocol for
inter-ECU Client/
Server
communication

[SWS_SomelpXf_00106]
[SWS_SomelpXf_00107]
[SWS_SomelpXf_00108]
[SWS_SomelpXf_00111]
[SWS_SomelpXf_00112]
[SWS_SomelpXf_00113]
[SWS_SomelpXf_00115]
[SWS_SomelpXf_00120]
[SWS_SomelpXf_00121]
[SWS_SomelpXf_00170]
[SWS_SomelpXf_00176]
[SWS_SomelpXf_00200]
[SWS_SomelpXf_00201]
[SWS_SomelpXf_00202]
[SWS_SomelpXf_00204]
[SWS_SomelpXf_00205]

[SRS_Xfrm_00103]

The SOME/IP
Transformer shall
support exception
notification of
applications

[SWS_SomelpXf_00111]

[SRS_Xfrm_00105]

The SOME/IP
Transformer shall
support autonomous
error reactions on
the server side for
client/server
communication

[SWS_SomelpXf_00203]

[SRS_Xfrm_00106]

The SOME/IP
Transformer shall
support serialization
of extensible data
structs and methods

[SWS_SomelpXf_00267]
[SWS_SomelpXf_00268]
[SWS_SomelpXf_00269]
[SWS_SomelpXf_00270]
[SWS_SomelpXf_00271]
[SWS_SomelpXf_00272]
[SWS_SomelpXf_00273]
[SWS_SomelpXf_00274]
[SWS_SomelpXf_00275]
[SWS_SomelpXf_00276]
[SWS_SomelpXf_00277]
[SWS_SomelpXf_00278]
[SWS_SomelpXf_00279]
[SWS_SomelpXf_00280]
[SWS_SomelpXf_00281]
[SWS_SomelpXf_00282]
[SWS_SomelpXf_00283]
[SWS_SomelpXf_00284]
[SWS_SomelpXf_00285]
[SWS_SomelpXf_00286]
[SWS_SomelpXf_00287]
[SWS_SomelpXf_00288]
[SWS_SomelpXf_00289]
[SWS_SomelpXf_00290]

AUTO SAR

[SWS_SomelpXf_00291]
[SWS_SomelpXf_00292]
[SWS_SomelpXf_00293]
[SWS_SomelpXf_00294]
[SWS_SomelpXf_00295]

AUTO SAR

7 Functional specification

Sending Application
SWC

Receiving Application
SWC

SOME/IP
Serializer

SOME/IP
Deserializer

Figure 7.1: Overview of SOME/IP Transformer

When a SWC initiates an inter-ECU communication which is configured to be trans-
formed, the SWC hands the data over to the RTE. The RTE executes the configured
transformer chain which contains the SOME/IP Transformer (A transformer chain may
contain also other transformers but this is omitted in this overview for simplicity).

The SOME/IP Transformer on the sender side serializes the data of the SWC and
brings them into an linear form. The serialized data are sent via the communication
stack over the bus to the receiver(s). The RTE of the receiver executes the transformer
chain in the reverse order. The SOME/IP transformer of the receiver deserializes the
linear data back into the original data structure. These are handed over to the receiving
SWC.

From the SWC’s point of view it is totally transparent whether data are transformed or
not.

The SOME/IP transformer is a transformer of the class Serializer. It serializes struc-
tured data into a linear form. Therefore it can only be used as the first transformer on
the sending side and the last transformer on the receiving side (in execution order).
Furthermore it provides the transformer errors specified for this transformer class and
supports only out-of-place buffer handling.

AUTO SAR

The SOME/IP Transformer has no module specific EcuC because its whole configu-
ration is based on the SOMEIPTransformationDescription and SOMEIPTrans—
formationISignalProps.

Identifiable
TransformationTechnology
+ haslnternalState: Boolean [0..1]
+ needsOriginalData: Boolean [0..1]
+ protocol: String
+ transformerClass: TransformerClassEnum
+ version: String
+transformer /|\ 1
FibexElement «atpVariation»
ISignal
+transformationDescription |0..1
+ dataTypePolicy: DataTypePolicyEnum
+ iSignalType: ISignalTypeEnum [0..1] Describable
+ length: Integer TransformationDescription
+transformationlSignalProps| 0..*
Describable
«atpVariation»
TransformationiSignalProps SOMEIPTransformationDescription
+ csEnorReaction: CSTransformerErrorReactionEnum [0..1] + alignment: Positivelnteger
+ byteOrder: ByteOrderEnum
% + interfaceVersion: Positivelnteger
SOMEIPTransformationISignalProps
«enumeration»
+ implementsLegacyStringSerialization: Boolean [0..1] CSTransformerErrorReactionEnum
+ interfaceVersion: Positivelnteger [0..1]
+ isDynamicLengthFieldSize: Boolean [0..1] autonomous
+ messageType: SOMEIPMessageTypeEnum [0..1] applicationOnly
+ sessonHandlingSR: SOMEIPTransformerSessionHandlingEnum [0..1]
+ sizeOfArrayLengthFields: Positivelnteger [0..1]
+ sizeOfStringLengthFields: Positivelnteger [0..1]
+ sizeOfStructLengthFields: Positivelnteger [0..1]
+ sizeOfUnionLengthFields: Positivelnteger [0..1]
«enumeration»
SOMEIPTransformerSessionHandlingEnum
«enumeration» enumeration
SOMEIPMessageTypeEnum « > sessionHandlingActive
ByteOrderEnum sessionHandlinglnactive
LIS Attributes
+ request FUR "
+ mostSignificantByteFirst
+ requestNoRetum I
A + mostSignificantByteLast
+ notification A
+ response opaque
Figure 7.2: SOME/IP specific configuration
Class SOMEIPTransformationDescription
Package M2::AUTOSARTemplates::SystemTemplate::Transformer
Note The SOMEIPTransformationDescription is used to specify SOME/IP transformer specific attributes.
Base ARObject, Describable, TransformationDescription
Attribute Type Muit. Kind | Note
alignment Positivelnteger 1 attr Defines the padding for alignment purposes that will be
added by the SOME/IP transformer after the serialized
data of the variable data length data element. The
alignment shall be specified in Bits.
byteOrder ByteOrderEnum 1 attr Defines which byte order shall be serialized by the
SOME/IP transformer
interfaceVersion | Positivelnteger 1 attr The interface version the SOME/IP transformer shall use.

Table 7.1: SOMEIPTransformationDescription

AUTO SAR

Class <<atpVariation>> SOMEIPTransformationISignalProps

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note The class SOMEIPTransformationlSignalProps specifies ISignal specific configuration properties for

SOME/IP transformer attributes.

Base ARObject, Describable, TransformationlSignalProps

Attribute Type Mult. Kind | Note

implements Boolean 0..1 attr This attribute indicates that Strings in the SOME/IP

LegacyString message shall NOT be serialized according to the SOME/

Serialization IP specification for Strings.
If this attribute is set to true, BOM and null-termination
shall NOT be added in the serialization for Strings in the
payload. If this attribute is set to false (or not set) BOM
and null-termination shall be added in the serialization for
Strings in the payload according to the SOME/IP
specification for Strings.
NOTE! This attribute is not future safe, and will be
removed in an upcoming AUTOSAR release!"

interfaceVersion | Positivelnteger .1 attr The interface version the SOME/IP transformer shall use.

isDynamic Boolean . attr This attribute shall be used to determine the wire type in

LengthFieldSize the context of using the TLV encoding.

messageType SOMEIPMessageType 0..1 attr The Message Type which shall be placed into the SOME/

Enum IP header.

session SOMEIPTransformer 0..1 attr Defines whether the SOME/IP transformer shall use

HandlingSR SessionHandlingEnum session handling for Sender/Receiver communication.

sizeOfArray Positivelnteger 0..1 attr The size of all length fields (in Bytes) of fixed-size arrays

LengthFields or dynamic size arrays in the SOME/IP message. This
attribute is valid for all available occurrences of fixed-size
arrays or dynamic size arrays in the SOME/IP message.

sizeOfString Positivelnteger 0..1 attr The size of all length fields (in Bytes) of dynamic length

LengthFields strings in the SOME/IP message. This attribute is valid for
all available occurrences of strings in the SOME/IP
message.

sizeOfStruct Positivelnteger 0..1 attr The size of all length fields (in Bytes) of structs in the

LengthFields SOME/IP message. This attribute is valid for all available
occurrences of structures in the SOME/IP message. For
a more fine granular modeling on the level of Data
Prototypes the DataPrototypeTransformationProps shall
be used.

sizeOfUnion Positivelnteger 0..1 attr The size of all length fields (in Bytes) of unions in the

LengthFields SOME/IP message. This attribute is valid for all available
occurrences of Unions in the SOME/IP message. For a
more fine granular modeling on the level of Data
Prototypes the DataPrototypeTransformationProps shall
be used.

tivDatald TlvDataldDefinitionSet * ref This reference identifies the TlvDataldDefinitions relevant

Definition for the enclosing SOMEIPTransformationlSignalProps

Table 7.2: SOMEIPTransformationlSignalProps
Enumeration ByteOrderEnum
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive Types

\Y%

AUTO SAR

A

Enumeration ByteOrderEnum

Note When more than one byte is stored in the memory the order of those bytes may differ depending on
the architecture of the processing unit. If the least significant byte is stored at the lowest address, this
architecture is called little endian and otherwise it is called big endian.
ByteOrder is very important in case of communication between different PUs or ECUs.

Literal Description

mostSignificantByte | Most significant byte shall come at the lowest address (also known as BigEndian or as

First Motorola-Format)

Tags:atp.EnumerationLiteralindex=0

mostSignificantByte
Last

Most significant byte shall come highest address (also known as LittleEndian or as Intel-Format)

Tags:atp.EnumerationLiteralindex=1

opaque For opaque data endianness conversion has to be configured to Opaque. See AUTOSAR COM
Specification for more details.
Tags:atp.EnumerationLiterallndex=2
Table 7.3: ByteOrderEnum
Enumeration SOMEIPMessageTypeEnum
Package M2::AUTOSARTemplates::SystemTemplate::Transformer
Note Depending on the style of the communication different message types shall be set in the header of a
SOME/IP message.
Literal Description
notification A request of a notification expecting no response.
Tags:atp.EnumerationLiterallndex=1
request A request expecting a response.
Tags:atp.EnumerationLiterallndex=2
requestNoReturn A fire&forget request.
Tags:atp.EnumerationLiterallndex=3
response The response message.
Tags:atp.EnumerationLiterallndex=4

Table 7.4: SOMEIPMessageTypeEnum

[SWS_SomelpXf_00151] [The SOME/IP transformer defined in this document shall
be used as a transformer if

¢ the attribute protocol of the TransformationTechnology is setto SOMEIP

e and the attribute version of the TransformationTechnology is setto 1

e and the attribute transformerClass of the TransformationTechnology is
setto serializer

|(SRS_Xfrm_00101)

AUTOSAR

7.1 Definition of Identifiers

[SWS_SomelpXf_00001] [A service shall be identified using the Service-ID.|(SRS_-
Xfrm_00008)

[SWS_SomelpXf_00002] [Service-IDs shall be of type 16 bit length unsigned integer
(uint16).] (SRS_Xfrm_00008)

The Service-ID of 0xFFFE shall be used to encode non-SOME/IP services. See
[SWS_SomelpXf_00130].

[SWS_SomelpXf_00005] [Different services within the same vehicle shall have differ-
ent Service-IDs. | (SRS_Xfrm_00008)

[SWS_SomelpXf_00006] [A service instance shall be identified using the Service-
Instance-ID. | (SRS_Xfrm_00008)

[SWS_SomelpXf_00007] [Service-Instance-IDs shall be of type 16 bit length un-
signed integer (uint16). | (SRS_Xfrm_00008)

The Service-Instance-IDs of 0x0000 and OxFFFF shall not be used for a service,
since 0x0000 is reserved and 0xFFFF is used to describe all service instances. See
[SWS_SomelpXf 00130].

[SWS_SomelpXf_00009] |Different service instances within the same vehicle shall
have different Service-Instance-1Ds. | (SRS_Xfrm_00008)

Note:

This means that two different camera services shall have two different Servicelnstance-
IDs SI-ID-1 and SI-ID-2. For one AUTOSAR system (that designs a vehicle product
line) SI-ID-1 shall be the same for all vehicles. The same is true for SI-ID-2. If consid-
ering another AUTOSAR system (that designs another vehicle product line), different
IDs may be used but it makes sense to use the same IDs among different AUTOSAR
systems for ease in testing and integration.

[SWS_SomelpXf_00010] [Methods and events shall be identified inside a service us-
ing a 16bit Method-ID, which is called Event-ID for events and notifications. | (SRS_-
Xfrm_00008)

[SWS_SomelpXf_00011] [Methods shall use Method-IDs with the highest bit set to 0,
while the Method-IDs highest bit shall be set to 1 for events and notifications of fields. |
(SRS_Xfrm_00008)

7.2 Specification of the SOME/IP on-wire format

Serialization describes the way data is represented in protocol data units (PDUs) trans-
ported over an automotive in-vehicle network.

AUTOSAR

7.2.1 Message Length Limitations

The usage of TCP allows for larger streams of data to transport SOME/IP header and
payload. However, current transport protocols for CAN and FlexRay limit messages
to 4095 Bytes. When compatibility to those has to be achieved, SOME/IP messages
including the SOME/IP header shall not exceed 4095 Bytes.

7.2.2 Endianess

[SWS_SomelpXf_00013] [All headers shall be encoded in network byte order Big
Endian (MostSignificantByteFirst) [RFC 791].| (SRS_Xfrm_00008)

This means that Length and Type fields shall be always in network byte order.

[SWS_SomelpXf_00172] [The byte order of the parameters inside the payload
shall be defined by byteOrder of SOMEIPTransformationDescription.|(SRS_-
Xfrm_00008)

7.2.3 Header

[SWS_SomelpXf_00152] [For interoperability reasons the header layout shall be iden-
tical for all implementations of SOME/IP and is described as follows:

1. Message ID (Service ID / Method ID) [32 bit]
2. Length [32 bit]
3. Additional information:
(a) Protocol Version [8 bit]
(b) Interface Version [8 bit]
(c) Message Type [8 bit]
(d) Return Code [8 bit]
4. Payload [variable size]

The fields are presented in transmission order; i.e. the fields on the top are transmit-
ted first. In the following sections the different header fields and their usage is being
described. | (SRS_Xfrm_00008)

Note: Layout is also shown in Figure 7.3.

AUTOSAR

0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24‘25‘26‘27‘28‘29‘30‘31 bit offset

Message ID (Service ID / Method ID) [32 bit]

Length [32 bit]

Request ID (Client ID / Session ID) [32 bit]

Protocol Version [8 bit] | Interface Version [8 bit] | Message Type [8 bit] Return Code [8 bit]

Covered by Length

Payload [variable size]

Figure 7.3: SOME/IP Header Format

Figure 7.3 shows the complete SOME/IP header. The SOME/IP transformer only
implements the lower part (all except Message ID and Length).

[SWS_SomelpXf_00015] [The SOME/IP transformer shall implement all fields of the
header except Message ID and Length. | (SRS _Xfrm_00008)

Rationale:
Message-ID and Length are not covered since this allows the AUTOSAR Socket Adap-
tor header mode to work.

These are added by other modules in the AUTOSAR BSW. Nonetheless they are con-
tained in Figure 7.3 to show the whole on-wire-format.

7.2.3.1 Message ID [32 bit]

The Message ID is a 32 bit identifier that is used to identify the message. The Message
ID has to uniquely identify a method or event of a service.

The assignment of the Message ID is up to the user; however, the Message ID has
to be unique for the whole system (i.e. the vehicle). The Message ID can be best
compared to a CAN ID and should be handled with a comparable process. The next
section 7.2.3.1.1 describes how to structure the Message IDs in order to ease the
organization of Message IDs.

7.2.3.1.1 Structure of the Message ID

In order to structure the different methods, events, and fields, they are clustered into
services. Services have a set of methods, events, and fields as well as a Service ID,
which is only used for this service.

AUTOSAR

An event shall be part of zero to many eventgroups and an eventgroup shall contain
zero to many events. A field shall be part of zero to many eventgroups and an event-
group can contain zero to many fields.

For inter-ECU Client/Server communication calls we structure the ID in 26 services
with 21 methods:

| Service ID [16 bit] | 0 [1 bit] | Method ID [last 15 bits] |

where the 0-Bit is the first bit of the 16 bit Method ID.

With 16 bit Service-ID and a 16 bit Method-ID starting with a 0-Bit (15 bit are still left
in the Method-ID for real values), this allows for up to 65536 services with up to 32768
methods each.

Since events and notifications are transported using Client/Server communication, the
ID space for the events is further structured:

| Service ID [16 bit] | 11 bit] | Event ID [last 15 bits] |

where the 1-Bit is the first bit of the 16 bit Method ID.

This means that up to 32768 events or notifications per service are possible.

7.2.3.2 Length [32 bit]

The Length field is 32 bit long and contains the length in Byte of the payload beginning
with the Request ID/Client ID until the end of the SOME/IP-message.

7.2.3.3 Request ID [32 bit]
[SWS_SomelpXf_00154] [The Request ID field shall be 32 bit long.|(SRS_Xfrm_-
00008)

The Request ID shall be the unique identifier for the calling client inside the ECU. lts
values are chosen by the RTE and handed over to the SOME/IP transformer.

[SWS_SomelpXf_00024] [The Request ID shall be constructed of the Client ID and
Session ID as shown in Table 7.5.| (SRS_Xfrm_00008)

| Client ID [16 bits] | Session ID [16 bits] |

Table 7.5: Construction of Request ID

Both are chosen by RTE and handed over to the transformer as
Rte_Cs_TransactionHandleType.

AUTOSAR

[SWS_SomelpXf_00025] [The clientId inside the
Rte_Cs_TransactionHandleType handed over from RTE shall be used for
the value of the Client ID.| (SRS_Xfrm_00008)

[SWS_SomelpXf_00026] [The sequenceCounter inside the
Rte_Cs_TransactionHandleType handed over from RTE shall be used for
the value of the Session ID. | (SRS_Xfrm_00008)

For details of Rte_Cs_TransactionHandleType see [SWS Rte 08732].

The Request ID allows a client to differentiate multiple calls to the same method. There-
fore, the Request ID has to be unique for a single client and server combination only.
When generating a response message, the server has to copy the Request ID from
the request to the response message. This allows the client to map a response to the
issued request even with more than one request outstanding.

Request IDs may be reused as soon as the response arrived or is not expected to
arrive anymore (timeout).

7.2.3.4 Protocol Version [8 bit]

[SWS_SomelpXf_00155] | The Protocol Version field shall be 8 bit long. | (SRS_Xfrm_-
00008)

[SWS_SomelpXf_00156] | The Protocol Version field shall contain the SOME/IP pro-
tocol version.| (SRS_Xfrm_00008)

[SWS_SomelpXf_00029] [The Protocol Version shall be set to 0x01.|(SRS_Xfrm_-
00008)

7.2.3.5 Interface Version [8 bit]

[SWS_SomelpXf_00030] [The Interface Version field shall be 8 bit long. | (SRS_Xfrm_-
00008)

[SWS_SomelpXf_00160] [The Interface Version field shall contain the Version of the
Service Interface. | (SRS_Xfrm_00008)

Rationale: This is required to catch mismatches in Service definitions and allows de-
bugging tools to identify the Service Interface used, if version is used.

7.2.3.6 Message Type [8 bit]

[SWS_SomelpXf_00161] [The Message Type field shall be 8 bit long. | (SRS _Xfrm_-
00008)

The Message Type field is used to differentiate different types of messages.

AUTOSAR

[SWS_SomelpXf_00031] [The Message Type field shall be filled with one of the values
of Table 7.6.] (SRS_Xfrm_00008)

Number Value Description

0x00 REQUEST A request expecting a response (even
void)

0x01 REQUEST_NO_RETURN A fire&forget request

0x02 NOTIFICATION A request of a notification expecting no
response

0x80 RESPONSE The response message

0x81 ERROR The response containing an error

Table 7.6: Message Types

A regular client request (message type 0x00) is answered by a server response (mes-
sage type 0x80), when no error occurred. If errors occur an error message (message
type 0x81) will be sent.

For updating values through notification a callback interface exists (message type
0x02).

It is possible to send a request that does not have a response message (message type
0x01) to use SOME/IP for AUTOSAR Sender/Receiver communication.

7.2.3.7 Return Code [8 bit]

[SWS_SomelpXf_00163] [The Return Code field shall be 8 bit long.|(SRS_Xfrm_-
00008)

[SWS_SomelpXf_00164] [The Return Code field shall be used to signal whether a
request has been successfully processed. | (SRS_Xfrm_00008)

For simplification of the header layout, every message transports the field Return Code.
The Return Codes are specified in detail in [SWS_SomelpXf_00115].

[SWS_SomelpXf_00033] [Messages of Type REQUEST, REQUEST_NO_RETURN,
and Notification have to set the Return Code to 0x00 (E_OK). | (SRS_Xfrm_00008)

[SWS_SomelpXf_00168] [The allowed Return Codes for specific message types are
specified in Table 7.7.| (SRS_Xfrm_00008)

Message Type Allowed Return Codes
REQUEST N/A, set to 0x00 (E_OK)
REQUEST_NO_RETURN N/A, set to 0x00 (E_OK)
NOTIFICATION N/A, set to 0x00 (E_OK)
RESPONSE See Return Codes in [SWS_SomelpXf_00115].

Table 7.7: Return Codes

AUTOSAR

7.2.3.8 Payload [variable size]

[SWS_SomelpXf_00165] [The Payload field shall have variable size.|(SRS_Xfrm_-
00008)

[SWS_SomelpXf_00166] [The Payload field shall contain the transported data.|
(SRS_Xfrm_00008)

The serialization of the data will be specified in the following section.

7.2.4 Serialization of Parameters and Data Structures

[SWS_SomelpXf_00034] |[The serialization shall be based on the Sender-
ReceiverInterface Or ClientServerInterface of the data.|(SRS_Xfrm_-
00101)

[SWS_SomelpXf_00169] [To allow migration the deserialization shall ignore parame-
ters attached to the end of previously known parameter list. | (SRS_Xfrm_00101)

This means: Parameters that were not defined in the ClientServerInterface or
SenderReceiverInterface used to generate or parameterize the deserialization
code at the end of the serialized data will be ignored by the deserialization.

[SWS_SomelpXf_00259] [After the serialized data of a variable data length Dat-
aPrototype a padding for alignment purposes shall be added for the configured
alignment (see [SWS_SomelpXf_00260] and [SWS_SomelpXf_00262)) if the variable
data length DataPrototype is not the last element in the serialized data stream. This
requirement does not apply for the serialization of extensible structs and methods. |
(SRS _Xfrm _00101)

Note: See also chapter 7.2.4.3.

[SWS_SomelpXf_00260] [If SOMEIPTransformationProps.alignment is set for
a variable data length data element, the value of SOMETIPTransformationProps.
alignment defines the alignment. This requirement does not apply for the serializa-
tion of extensible structs and methods .| (SRS_Xfrm_00101)

Note: See also chapter 7.2.4.3.

[SWS_SomelpXf_00262] [If SOMEIPTransformationProps.alignment is not set
for a variable data length data element, the value of SOMETIPTransformationDe-
scription.alignment defines the alignment. This requirement does not apply for
the serialization of extensible structs and methods. | (SRS_Xfrm_00101)

Note: See also chapter 7.2.4.3.

[SWS_SomelpXf_00263] [After serialized fixed data length data elements, the
SOME/IP transformer shall never add automatically a padding for alignment. | (SRS_-
Xfrm_00101)

AUTOSAR

Note:
If the following data element shall be aligned, a padding element of according size
needs to be explicitly inserted into the TmplementationDataType.

[SWS_SomelpXf_00037] [Alignment shall always be calculated from start of SOME/IP
message. | (SRS_Xfrm_00101)

This attribute defines the memory alignment. The SOME/IP Transformer does not try
to automatically align parameters but aligns as specified. The alignment is currently
constraint to multiple of 1 Byte to simplify code generators.

SOME/IP payload should be placed in memory so that the SOME/IP payload is suit-
able aligned. For infotainment ECUs an alignment of 8 Bytes (i.e. 64 bits) should be
achieved, for all ECU at least an alignment of 4 Bytes should be achieved. An efficient
alignment is highly hardware dependent.

[SWS_SomelpXf_00016] [If more data than expected are handed over to the
SOME/IP transformer during deserialization of data, the unexpected data shall be dis-
carded. The known fraction shall be considered. | (SRS_Xfrm_00101)

[SWS_SomelpXf_00017] [If less data than expected are handed over to the SOME/IP
transformer during deserialization of data, the following shall happen:

e if for the corresponding ISignal an initial value is specified (in serialized form)
use the value to fill the missing elements at the end of the serialized stream.

o if no initial value is available abort deserialization with
E_SER MALFORMED MESSAGE.

|(SRS_Xfrm_00101)

Missing data can only be recognized by comparing the length of received serialized
data with the expected length of the data. [SWS_SomelpXf_00017] enables extensions
of data by adding elements to the end and achieve backward compatibility of an ECU
with older boardnet layouts that are missing those data.

In the following the serialization of different parameters is specified.

7.2.4.1 Basic Datatypes

[SWS_SomelpXf_00036] [The swBaseTypes defined in [7] and according to [TPS_-
STDT _00067] placed in the package /AUTOSAR_Platform/BaseTypes (€.9., /AU-
TOSAR_Platform/BaseTypes/uint32) whihc shall be supported for serialization
are listed in Table 7.8.| (SRS_Xfrm_00101)

Type Description Size [bit] Remark

boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
uint8 unsigned Integer 8

uint16 unsigned Integer 16

uint32 unsigned Integer 32

AUTOSAR

uint64 unsigned Integer 64

sint8 signed Integer 8

sint16 signed Integer 16

sint32 signed Integer 32

sint64 signed Integer 64

float32 floating point number 32 IEEE 754 binary32 (Single Preci-
sion)

float64 floating point number 64 IEEE 754 binary64 (Double Preci-
sion)

Table 7.8: swBaseTypes supported for serialization

The Byte Order is specified common for all parameters by byteOrder of SOMEIP-
TransformationDescription. See chapter 7.2.2.

7.2.4.2 Structured Datatypes (structs)

[SWS_SomelpXf_00042] [A struct shall be serialized in order of depth-first traversal. |
(SRS_Xfrm_00101)

The transformer doesn’t automatically align parameters of a struct.

Insert reserved/padding elements into the AUTOSAR data type if needed for alignment,
since the SOME/IP implementation shall not automatically add such padding.

So if for example a struct includes a uint8 and a uint32, they are just written sequentially
into the buffer. This means that there is no padding between the uint8 and the first byte
of the uint32; therefore, the uint32 might not be aligned. So the system designer has
to consider to add padding elements to the data type to achieve the required alignment
or set it globally.

Warning about unaligned structs or similar shall not be done in the implementation but
only in the tool chain used to generate the implementation.

Messages of legacy busses like CAN and FlexRay are usually not aligned. Warnings
can be turned off or be ignored in such cases.

The SOME/IP transformer does not automatically insert dummy/padding elements.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of structs. The length
field of a struct describes the number of bytes of the struct. This allows for extensible
structs which allow better migration of interfaces.

[SWS_SomelpXf_00216] [If attribute sizeOfStructLengthFields of SOMEIP-
TransformationISignalProps is set to a value greater 0, a length field shall be
inserted in front of every serialized struct.| (SRS_Xfrm_00101)

Note:
[SWS_SomelpXf_00216] also applies to nested structs which means that additionally

AUTOSAR

every nested struct has its own length field. Furthermore, in an array of structs where
all structs have the same length, the length field is inserted in front of every struct inside
the array.

[SWS_SomelpXf_00252] [If attribute sizeOfStructLengthField of SOMEIP-
TransformationProps is set to a value greater 0, a length field shall be inserted
in front of the serialized struct for which the SOMEIPTransformationProps is de-
fined. (See [TPS_SYST_02121]) | (SRS_Xfrm_00101)

Note:

[SWS_SomelpXf_00252] applies if the length fields of the struct and all nested structs
contained within the root struct are configured to different values for the lengths of the
length fields via SOMEIPTransformationProps.

[SWS_SomelpXf_00217] [The data type of the length field of the struct and all nested
structs within the struct shall be the same and shall be determined by the value
of SOMEIPTransformationISignalProps.sizeOfStructLengthFields of the
serialized ISignal:

e uint8if sizeOfStructLengthFields equals 1

e uInt16if sizeOfStructLengthFields equals 2

e uint32if sizeOfStructLengthFields equals 4
|(SRS_Xfrm_00101)

[SWS_SomelpXf_00253] [SOMEIPTransformationProps.sizeOf-
StructLengthField is present for a struct the data type for the length field of
the struct shall be determined by the value of SOMEIPTransformationProps.
sizeOfStructLengthField:

e uiNt8if sizeOfStructLengthField equals 1

e UNt16if sizeOfStructLengthField equals 2

e UINt32if sizeOfStructLengthField equals 4

e Otherwise [SWS_SomelpXf_00217] applies.
|(SRS_Xfrm_00101)

[SWS_SomelpXf_00218] [The serializing SOME/IP transformer shall write the size (in
bytes) of the serialized struct (without the size of the length field) into the length field of
the struct.| (SRS _Xfrm_00101)

[SWS_SomelpXf_00219] [If the length is greater than the expected length of a struct
(as specified in the data type definition) a deserializing SOME/IP transformer shall only
interpret the expected data and skip the unexpected. | (SRS_Xfrm_00101)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP transformer can use the supplied length information.

AUTOSAR

Struct=1 uint32 a
float32 b 1
uint32 a float32 b_2
float32 b[2] serialization > uint32 d
Struct_2 ¢ Struct 2 float32e_1
= float32e 2
uint32d

float32 e[2]

Struct_3f

Figure 7.4: Serialization of Structs without Length Fields (Example)

Struct 1 uint16 If1
uint32 a
uint32 a float32 b_1
float32 b[2] serialization > float32 b 2
uint16 If2
uint32 d
float32e_1
float32 e _2
uint16 If3

Struct_2 ¢ Struct_2

uint32 d
float32 e[2]

Struct_3f

Figure 7.5: Serialization of Structs with Length Fields (Example)

7.2.4.3 Structured Datatypes and Arguments with Identifier and optional Mem-
bers

Please note that the content of this chapter has draft character

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can
skip unknown members/arguments, i.e. where the Data ID is unknown. New member-
s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

AUTOSAR

Structs are modeled in the Software Component Template using an Implementa-
tionDataType Of category STRUCTURE and members are represented by Imple-
mentationDataTypeElements. Method arguments are represented by Argument-
DataPrototypes. Refer to [8] for more details.

The assignment of Data IDs is modeled in the System Template in the context of
SOMEIPTransformationISignalProps. Referto [9] for more details.

Moreover, the usage of Data IDs allows describing structs with optional members. To
serialize data with optional members, the transformer has to know which optional mem-
bers are available or not. This is stored in a bitfield which is contained inside the Im-
plementationDataType. This availabilityBitfield is realized as array of uint8.

Whether an optional member is actually present in the struct or not, must be deter-
mined during runtime.

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

[SWS_SomelpXf_00267] [The length of a tag shall be two bytes.| (SRS_Xfrm_00106)
[SWS_SomelpXf_00268] [The tag shall consist of

e reserved (Bit 7 of the first byte)

e wire type (Bit 6-4 of the first byte)

e Data ID (Bit 3-0 of the first byte and bit 7-0 of the second byte)

Bit 7 is the highest significant bit of a byte, bit 0 is the lowest significant bit of a byte. |
(SRS Xfrm 00106)

Note: Refer to Figure 7.6 for the layout of the tag.

7 0 7 0 |7/15/31 0
< Wire Type Dat;;DF(,';'r?)her Data ID (Lower Sig. Part) Length Field (8/16/32 bit) Member Data ...

Byten Byten+1 Byten+2...

Figure 7.6: SOME/IP Struct Tag Layout

[SWS_SomelpXf_00269] [The lower significant part of the Data ID of the member
shall be encoded in bits 7-0 of the second byte of the tag. The higher significant part of
the Data ID of the member shall be encoded in bits 3-0 of the first byte. | (SRS_Xfrm_-
00106)

Example: The Data ID of the member is 1266 (dec). Then bits 3-0 of the first byte are
set to 0x4. The second byte is set to 0xF2.

[SWS_SomelpXf_00270] [The wire type shall determine the type of the following data
of the member. The value shall be assigned as shown in Table 7.9.|(SRS_Xfrm_-
00106)

AUTOSAR

Wire Type Value

0 8 Bit Data Base data type

1 16 Bit Data Base data type

2 32 Bit Data Base data type

3 64 Bit Data Base data type

4 Complex Data Type: Array, Struct, String, Union with length
field of static size (configured in data definition)

5 Complex Data Type: Array, Struct, String, Union with length
field size 1 byte (ignore static definition)

6 Complex Data Type: Array, Struct, String, Union with length
field size 2 byte (ignore static definition)

7 Complex Data Type: Array, Struct, String, Union with length

field size 4 byte (ignore static definition)

Table 7.9: Message Types

Note: Wire type 4 ensures the compatibility with the current approach where the size
of length fields is statically configured. This approach has the drawback that changing
the size of the length field during evolution of interfaces is always incompatible. Thus,
wire types 5, 6 and 7 allow to encode the size of the used length field in the transferred
byte stream.

[SWS_SomelpXf_00271] [If SOMEIPTransformationISignalProps.isDynami-—
cLengthFieldSize is set to false or is not defined, the transformer shall use wire
type 4 for serializing complex types and shall use the fixed size length fields. The size of
the length fields is defined in SOMETIPTransformationISignalProps.sizeOfAr—
rayLengthFields, sizeOfStructLengthFields and sizeOfUnionLength-
Fields.|(SRS_Xfrm_00106)

[SWS_SomelpXf_00272] [SOMEIPTransformationISignalProps.isDynami-—
cLengthFieldSize is set to true, the transformer shall use wire types 5,6,7 for
serializing complex types and shall chose the size of the length field according to this
wire type. | (SRS_Xfrm_00106)

[SWS_SomelpXf_00273] [A deserializer shall always be able to handle the wire types
4,5, 6 and 7 independent of the setting of SOMETPTransformationISignalProps.
isDynamicLengthFieldSize|(SRS_Xfrm_00106)

[SWS_SomelpXf_00274] [If a Data ID is defined for an ArgumentDataPrototype
or ImplementationDataTypeElement by means of SOMEIPTransformation-—
ISignalProps.tlvDatald.id, atag shall be inserted in the serialized byte stream. |
(SRS_Xfrm_00106)

Note: regarding existence of Data IDs, refer to [9].

[SWS_SomelpXf_00275] [If the datatype of the serialized member / argument is a
basic datatype (wire types 0-3) and a Data ID is configured, the tag shall be inserted
directly in front of the member/argument. No length field shall be inserted into the
serialized stream.| (SRS_Xfrm_00106)

AUTOSAR

[SWS_SomelpXf_00276] [If the datatype of the serialized member/argument is not a
basic datatype (wire type 4-7) and a Data ID is configured, the tag shall be inserted in
front of the length field. | (SRS_Xfrm_00106)

[SWS_SomelpXf_00277] [If the datatype of the serialized member/argument is not a
basic datatype and a Data ID is configured, a length field shall always be inserted in
front of the member/argument. | (SRS_Xfrm_00106)

Rationale: The length field is required to skip unknown members/arguments during
deserialization.

[SWS_SomelpXf_00278] [The length field shall always contain the length up to the
next tag of the struct, but does not include the tag size and length field size itself. |
(SRS _Xfrm_00106)

[SWS_SomelpXf_00279] [If the member itself is of type struct, there shall be exactly
one length field. | (SRS_Xfrm_00106)

[SWS_SomelpXf_00280] [If the member itself is of type dynamic length string, there
shall be exactly one length field.| (SRS_Xfrm_00106)

[SWS_SomelpXf_00281] [If the member itself is of type fixed length string, there
shall be exactly one length field corresponding to dynamic length strings. | (SRS_Xfrm_-
00106)

Note: When serialized without tag, fixed length strings do not have a length field. For
the serialization with tag, a length field is also required for fixed length strings in the
same way as for dynamic length strings.

[SWS_SomelpXf_00282]{DRAFT} [If the member itself is of type dynamic length ar-
ray, there shall be exactly one length field. | (SRS_Xfrm_00106)

[SWS_SomelpXf_00283] [If the member itself is of type fixed length array, there shall
be exactly one length field. | (SRS_Xfrm_00106)

[SWS_SomelpXf_00284] [If the member itself is of type union, there shall be exactly
one length field. | (SRS_Xfrm_00106)

[SWS_SomelpXf_00285] [For the serialization of extensible structs and methods the
length field shall cover the size of the type field, data and padding bytes if the member
itself is of type union.| (SRS_Xfrm_00106)

Note: For the serialization without tags, the length field of unions does not cover the
type field (see [SWS_SomelpXf_00226]). For the serialization with tags, it is required
that the complete content of the serialized union is covered by the length field.

[SWS_SomelpXf_00286] [A member of a non-extensible (standard) struct which is of
type extensible struct, shall be serialized according to the requirements for extensible
structs. | (SRS_Xfrm_00106)

AUTOSAR

[SWS_SomelpXf_00287] [A member of an extensible struct which is of type non-
extensible (standard) struct, shall be serialized according to the requirements for stan-
dard structs. | (SRS_Xfrm_00106)

[SWS_SomelpXf_00288] |For the serialization of extensible structs and methods no
alignment shall be applied. | (SRS_Xfrm_00106)

Rationale: When alignment greater 8 bits is used, the serializer may add padding bytes
after variable length data. The padding bytes are not covered by the length field. If the
receiver does not know the Data ID of the member, it also does not know that it is
variable length data and that there might be padding bytes.

[SWS_SomelpXf_00289] [If the attribute i sStructWithOptionalElement of the
ImplementationDataType representing the extensible struct is set to true, the
transformer shall ignore the first ImplementationDataTypeElement and shall not se-
rialize or deserialize it. | (SRS_Xfrm_00106)

Rationale: the first TmplementationDataTypeElement represents the availability
bitfield which is not transferred on the wire.

[SWS_SomelpXf_00290] [The transformer shall only serialize an optional member of
a struct if the corresponding bit in the availability bitfield is set as follows:

(availabilityBitfield[(pos/8)] & (1<<(pos mod 8))) != 0
|(SRS_Xfrm_00106)

[SWS_SomelpXf_00291] [If an optional member is available in the serialized byte
stream, the transformer shall set the corresponding bit in the availability bitfield as
follows:

availabilityBitfield[(pos/8)] = availabilityBitfield[(pos/8)] | (1<<(pos mod 8))
|(SRS_Xfrm_00106)

[SWS_SomelpXf_00292] [If an optional member is not available in the serialized byte
stream, the transformer shall clear the corresponding bit in the availability bitfield as
follows:

availabilityBitfield[(pos/8)] = availabilityBitfield[(pos/8)] & ~(1<<(pos mod 8))
|(SRS_Xfrm_00106)

In the requirements [SWS_SomelpXf_00288], [SWS_SomelpXf_00289] and [SWS_-
SomelpXf_00290] pos is the position of the optional ImplementationDataType-
Element among all optional ImplementationDataTypeElements within the Im-
plementationDataType starting with pos = 0.

Note: Non-optional TmplementationDataTypeElements do not count since they
do not need a bit in the availabilityBitfield. So the bit position within the availability-
Bitfield is determined by the order of the optional ImplementationDataTypeEle—
ments. Examples:

¢ 1st optional ImplementationDataTypeElement (pos=0):

AUTOSAR

(availabilityBitfield[0] & 0x01l) != 0

e 8th optional ImplementationDataTypeElement (pos=7):

(availabilityBitfield[0] & 0x80) != 0

e 9th optional ImplementationDataTypeElement (pos=8):

(availabilityBitfield[1l] & O0x01) !'= 0

[SWS_SomelpXf_00295] [If an optional member is not available in the received se-
rialized byte stream, the transformer shall keep the memory section occupied by this
optional element without modification.| (SRS_Xfrm_00106)

[SWS_SomelpXf_00293] [If the transformer reads an unknown Data ID (i.e. not con-
tained in its data definition), it shall skip the unknown member/argument by using the
information of the wire type and length field. | (SRS_Xfrm_00106)

[SWS_SomelpXf_00294] [If the transformer cannot find a required (i.e. non-optional)
member defined in its data definition in the serialized byte stream, the deserialization
shall be aborted with E_SER_MALFORMED_MESSAGE. For examples, please refer to
[10].](SRS_Xfrm_00106)

7.2.4.4 Strings

[SWS_SomelpXf_00053] [Strings shall be encoded using Unicode and terminated
with a

"\textbackslashO"-character

for both fixed-length and dynamic-length strings. Unused space shall be filled using
"\0".](SRS_Xfrm_00101)

[SWS_SomelpXf_00054] |Different Unicode encoding shall be supported including
UTF-8, UTF-16BE, and UTF-16LE. Since these encoding have a dynamic length of
bytes per character, the maximum length in bytes is up to three times the length of
characters in UTF-8 plus 1 Byte for the termination with a "\0" or two times the length
of the characters in UTF-16 plus 2 Bytes for a "\0". UTF-8 character can be up to 6
bytes and an UTF-16 character can be up to 4 bytes. |(SRS_Xfrm_00101)

[SWS_SomelpXf_00055] [UTF-16LE and UTF-16BE strings shall be zero terminated
with a

"\textbackslashO"-character
. This means they shall end with (at least) two 0x00 Bytes.|(SRS_Xfrm_00101)

[SWS_SomelpXf_00056] [UTF-16LE and UTF-16BE strings shall have an even
length. | (SRS_Xfrm_00101)

AUTOSAR

[SWS_SomelpXf_00057] [For UTF-16LE and UTF-16BE strings having an odd length
the last byte shall be silently removed by the receiving SOME/IP transformer.| (SRS_-
Xfrm_00101)

[SWS_SomelpXf_00248] [In case of UTF-16LE and UTF-16BE strings having an odd
length, after removal of the last byte, the two bytes before shall be 0x00 bytes (termi-
nation) for a string to be valid. | (SRS_Xfrm_00101)

[SWS_SomelpXf_00058] [All strings shall always start with a Byte Order Mark (BOM).
The BOM shall be included in fixed-length-strings as well as dynamic-length strings. |
(SRS_Xfrm _00101)

For the specification of BOM, see [11] and [12]. Please note that the BOM is used in
the serialized strings to achieve compatibility with Unicode.

[SWS_SomelpXf_00239] [The String specific serialization will only be triggered if
an Unicode String is detected and implementslLegacyStringSerialization is
false.|(SRS_Xfrm_00101)

For the details of the recognition and serialization of fixed- and dynamic-length strings
see chapter 7.2.4.4.1 and chapter 7.2.4.4.2.

[SWS_SomelpXf_00059] [The receiving SOME/IP transformer implementation shall
check the BOM and handle a missing BOM or a malformed BOM as an error. | (SRS_-
Xfrm_00101)

[SWS_SomelpXf_00060] [The BOM shall be added by the SOME/IP sending trans-
former implementation. | (SRS_Xfrm_00101)

7.2.4.4.1 Strings (fixed length)
The length of the string (this includes the "\0") in Bytes is specified in the data type
definition.

[SWS_SomelpXf_00240] Recognition of UTF-8 Fixed Length Strings [An UTF-8
Fixed Length String shall be detected if an ApplicationPrimitiveDataType and
an ImplementationDataType with the following pattern are used:

e ApplicationPrimitiveDataType
— with category equal to STRING

— ApplicationPrimitiveDataType.swhDataDefProps.swTextProps.
baseType refersto a BaseType With baseTypeDefinition.baseType-
Encoding equal to UTF-8

e TmplementationDataType

— with category ARRAY

AUTOSAR

— that contains exactly one TmplementationDataTypeElement that boils
down to a uint8 ImplementationDataType:

x ImplementationDataTypeElement.arraySize is setto a value

* ImplementationDataTypeElement.arraySizeSemantics is set
o fixedSize

|(SRS_Xfrm_00101)

[SWS_SomelpXf_00241] Recognition of UTF-16 Fixed Length Strings [An UTF-16
Fixed Length String shall be detected if an ApplicationPrimitiveDataType and
an ImplementationDataType with the following pattern are used:

e ApplicationPrimitiveDataType
— with category equal to STRING

— ApplicationPrimitiveDataType.swDataDefProps.swTextProps.
baseType refers to a BaseType with baseTypeDefinition.baseType-
Encoding equal to UTF-16

e TmplementationDataType
— with category ARRAY

— that contains exactly one ImplementationDataTypeElement that boils
down to a uint16 ImplementationDataType:

* ImplementationDataTypeElement.arraySize is setto avalue

x ImplementationDataTypeElement.arraySizeSemantics is set
o fixedSize

|(SRS_Xfrm_00101)

[SWS_SomelpXf_00244] Serialization of fixed length strings [Serialization of fixed
length strings shall consist of the following steps:

1. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a E. SER_GENERIC_ERROR error shall be issued.

2. Appending BOM at the beginning of the output buffer, if BOM is not already avail-
able in the first three (UTF-8) or two (UTF-16) bytes of the to be serialized array
containing the string. If the BOM is already present, simply copy the BOM into
the output buffer.

3. Copying the string data (the number of bytes according to the string’s fixed length)
from the array into the output buffer, optionally performing a conversion between
UTF-16LE and UTF-16BE between ECU and network byte order if BaseTypeDi -
rectDefinition.byteOrder and SOMEIPTransformationDescription.
byteOrder have different values

|(SRS_Xfrm_00101)

AUTOSAR

[SWS_SomelpXf_00246] Deserialization of fixed length strings [Deserialization of
fixed length strings shall consist of the following steps:

1.

Check whether the string starts with a BOM. If not, a MALFORMED_MESSAGE error
shall be issued

Check whether BOM has the same value as SOMEIPTransformationDe-—
scription.byteOrder. If not, a MALFORMED_MESSAGE error shall be issued

Remove the BOM

Silently discard the last byte of the string in case of an UTF-16 string with odd
length

Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a MALFORMED_MESSAGE error shall be issued

Copy the string data (the number of bytes according to the string’s fixed length)
from the input buffer into the array, optionally performing a conversion between
UTF-16LE and UTF-16BE between network and ECU byte order if BaseTypeDi-
rectDefinition.byteOrder and SOMEIPTransformationDescription.
byteOrder have different values.

|(SRS_Xfrm_00101)

7.2.4.4.2 Strings (dynamic length)

Strings with dynamic length can be realized in an AUTOSAR system as an array with
dynamic length that transports the single characters.

[SWS_SomelpXf_00242] Recognition of UTF-8 Variable Length Strings [An UTF-8
Fixed Length String shall be detected if an ApplicationPrimitiveDataType and
an ImplementationDataType With the following pattern are used:

e ApplicationPrimitiveDataType

— with category equal to STRING

— ApplicationPrimitiveDataType.swDataDefProps.swlextProps.
baseType refers to a BaseType With baseTypeDefinition.baseType-
Encoding equal to UTF-8

e TmplementationDataType

The ImplementationDataType shall be defined according to [TPS_SWCT_-
01650] as a STRUCTURE that contains exactly two Implementation-
DataTypeElements and shall follow the rules defined by [constr_1318]:

— one ImplementationDataTypeElement represents the Size Indica-
tor and has the category equal to TYPE_REFERENCE which points to a
uint8, uint16 or uint32 ImplementationDataType

AUTOSAR

— one ImplementationDataTypeElement has the category equal to
ARRAY and contains exactly one ImplementationDataTypeElement
that boils down to a uint8 ImplementationDataType

|(SRS_Xfrm_00101)

[SWS_SomelpXf_00243] Recognition of UTF-16 Variable Length Strings [An
UTF-16 Fixed Length String shall be detected if an ApplicationPrimitive-
DataType and an ImplementationDataType With the following pattern are used:

e ApplicationPrimitiveDataType
— with category equal to STRING

— ApplicationPrimitiveDataType.swhDataDefProps.swTextProps.
baseType refersto a BaseType With baseTypeDefinition.baseType-
Encoding equal to UTF-16

e TmplementationDataType
The ImplementationDataType shall be defined according to [TPS_SWCT -
01650] as a STRUCTURE that contains exactly two Implementation-
DataTypeElements and shall follow the rules defined by [constr_1318]:

— one ImplementationDataTypeElement representsthe Size Indica-
tor and has the category equal to TYPE_REFERENCE which points to a
uint8, uint16 or uint32 ImplementationbDataType

— one ImplementationDataTypeElement has the category equal to
ARRAY and contains exactly one ImplementationDataTypeElement
that boils down to a uint16 ImplementationDataType

|(SRS_Xfrm_00101)

[SWS_SomelpXf_00245] Serialization of dynamic length strings [Serialization of
dynamic length strings shall consist of the followign steps:

1. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a E. SER_GENERIC_ERROR error shall be issued.

2. Add the Length Field - The value of the length field shall be computed by multi-
plying the number of elements given by the size indicator with the size in bytes of
each element (i.e., 1 for UTF-8 and 2 for UTF-16) increased by the size in bytes
required by the BOM. The data type of the length field shall be determined from
the sizeOfStringLengthFields. If the attribute sizeOfStringLength-
Fields is not configured then the default value of 32 bit shall be used as de-
fined by [PRS_SOMEIP_00094]. The value of the length field shall comply with
[SWS_SomelpXf_ CONSTR_0001].

3. Appending BOM at the beginning, if BOM is not already available in the first 3
(UTF-8) or 2 (UTF-16) bytes of the to be serialized array containing the string. If
the BOM is already present, simply copy the BOM into the output buffer

AUTOSAR

4.

Copying the string data (copy the the number of bytes according to the string’s
size indicator and the size of bytes of each element) from the array into the out-
put buffer, optionally performing a conversion between UTF-16LE and UTF-16BE
between ECU and network byte order BaseTypeDirectDefinition.byte-—
Order and SOMEIPTransformationDescription.byteOrder have differ-
ent values

|(SRS_Xfrm_00101)

[SWS_SomelpXf_00247] Deserialization of dynamic length strings
[Deserialization of dynamic length strings shall consist of the following steps:

1.

Check whether the string starts with a BOM. If not, a MALFORMED_MESSAGE error
shall be issued

Check whether BOM has the same value as SOMEIPTransformationDe—
scription.byteOrder. If not, a MALFORMED_MESSAGE error shall be issued

Remove the BOM and reduce the value of the length field accordingly

Silently discard the last byte of the string in case of an UTF-16 string with odd
length (according to the reduced value of the length field)

Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a MALFORMED_MESSAGE error shall be issued

Check whether the length of the received dynamic length string is less or
equal than the specified maximum length of the string (ApplicationPrimitive-
DataType.swTextProps.swMaxTextSize or arraySize of ImplementationDataType-
Element of category ARRAY). If not, a MALFORMED_MESSAGE error shall be
issued.

Copy the string data (copy the number of bytes according to the string’s reduced
value of the length field) from the input buffer into the array, optionally perform-
ing a conversion between (UTF-16LE) and (UTF-16BE) between ECU and bus
if BaseTypeDirectDefinition.byteOrder and SOMEIPTransformation—
Description.byteOrder have different values.

|(SRS_Xfrm_00101)

7.2.4.5 Arrays (fixed length)

[SWS_SomelpXf_00069] [The length of fixed length arrays is defined by the datatype
definition. | (SRS_Xfrm_00101)

They can be seen as repeated elements. In chapter 7.2.4.7 dynamic length arrays are
shown, which can be also used. Fixed length arrays are easier for use in very small
devices. Dynamic length arrays might need more resources on the ECU using them.

AUTOSAR

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of arrays. The length field
of an array describes the number of bytes of the array. This allows extensible arrays
which allow better migration of interfaces.

[SWS_SomelpXf_00220] |[If attribute sizeOfArrayLengthFields of SOMEIP-
TransformationISignalProps is set to a value greater 0, a length field shall be
inserted in front of every serialized array. | (SRS_Xfrm_00101)

Note:
[SWS_SomelpXf_00220] also applies to nested arrays which means that additionally
every nested fixed-size array has its own length field.

[SWS_SomelpXf_00256] |[If attribute sizeOfArrayLengthField of SOMEIP-
TransformationProps is set to a value greater 0, a length field shall be inserted
in front of the serialized array for which the SOMEIPTransformationProps is de-
fined. (See [TPS_SYST_02121])| (SRS_Xfrm_00101)

Note:

[SWS_SomelpXf_00256] applies if the length fields of the array and all nested ar-
rays contained are configured to different values for the lengths of the length fields
via SOMEIPTransformationProps

[SWS_SomelpXf_00257] [f SOMEIPTransformationProps.sizeOfAr-
rayLengthField is present for a static size array the data type for the length
field of the array shall be determined by the value of SOMEIPTransformation-
Props.sizeOfArrayLengthField:

e uint8if sizeOfArrayLengthField equals 1

e uint16if sizeOfArrayLengthField equals 2

e UInt32if sizeOfArrayLengthField equals 4

e Otherwise [SWS_SomelpXf_00221] applies.
|(SRS_Xfrm_00101)

[SWS_SomelpXf_00221] [The data type of the length field for an array shall be
determined by the value of SOMEIPTransformationISignalProps.sizeOfAr-
rayLengthFields of the serialized 1Signal:

e Unt8if sizeOfArraylLengthFields equals 1

e uint16if sizeOfArrayLengthFields equals 2

e UINt32if sizeOfArraylLengthFields equals 4
|(SRS_Xfrm_00101)

[SWS_SomelpXf_00222] [The serializing SOME/IP transformer shall write the size (in
bytes) of the serialized array (without the size of the length field) into the length field of
the array. | (SRS_Xfrm_00101)

AUTOSAR

[SWS_SomelpXf_00223] [If the length is greater than the expected length of an array
(as specified in the data type definition) a deserializing SOME/IP transformer shall only
interpret the expected data and skip the unexpected. | (SRS_Xfrm_00101)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP transformer can use the supplied length information.

7.2.4.5.1 One-dimensional

The one-dimensional arrays with fixed length n carry exactly n elements of the same
type. The layout is shown in Figure 7.7.

[SWS_SomelpXf_00070] [A one-dimensional array with fixed length shall be serial-
ized by concatenating the array elements in order.| (SRS_Xfrm _00101)

1 1
i Static Array a[n] i
1 1
i i| Element_1 i| Element_2 Element_3 Element_n i
]]
i ! !
il ! ! i
mh 1 EEnE 1
1 1 1 1
il ! i
I I . I I
1 1 element size e [byte] 1 H
: n*e :

&
Ny

\ 4

Figure 7.7: One-dimensional array (fixed length)

7.2.4.5.2 Multidimensional

[SWS_SomelpXf_00072] [The serialization of multidimensional arrays shall happen
in row-major order(in-memory layout of multidimensional arrays in the C programming
language) | (SRS_Xfrm_00101)

A
\4

]]
i Static Array a[n][m] i
i ' 1
i[i| Element_1 i Element_2 Element_n E
1K ! |
HHE e :
HH H s) ' |
HHE : i eee :
1K ! ' |
i ! | |
H HH H ' '
il oe ! l
i m* e R i
E ' n*(m*e) |
' '

Figure 7.8: Multidimensional array (fixed length)

AUTOSAR
Consult AUTOSAR SWS RTE chapter 5.3.4.4 for Arrays.

7.2.4.6 Optional Parameters / Optional Elements

Optional Elements can be encoded as array with 0 to 1 elements. For the serialization
of arrays with dynamic length see Chapter 7.2.4.7.

7.2.4.7 Dynamic Length Arrays / Variable Size Arrays

Variable size arrays are implemented in AUTOSAR as structs with two members

e a size indicator which is an integer and holds the number of valid elements in the
array

e the array with variable size

In SOME/IP variable size arrays are implemented in a similar manner. Only the size
indicator is replaced by a length indicator.

¢ a length indicator which is an integer and holds the length (in bytes) of the follow-
ing variable size array

e the array which contains the valid elements of the variable size array

In AUTOSAR also so called "old-world" variable-size array data types exist which don’t
have a size indicator. These are not supported by data transformation in general and
hence also not supported by the SOME/IP transformer. For details, refer to [con-
str_1387] ([9, System Template]), [TPS_SWCT_01644], [TPS_SWCT _01645], [TPS_-
SWCT_01642] and [TPS_SWCT_01643].

[SWS_SomelpXf_00076] [A variable size array embedded in a structure which also
contains a size indicator shall be serialized as the concatenation of the following