
 Specification of Service Discovery
AUTOSAR CP R20-11

1 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Document Change History
Date Release Changed by Change Description

2020-11-30 R20-11 AUTOSAR
Release
Management

 Alignments with Service Discovery

Protocol specification

 Several minor bugfixes

 Editorial changes

2019-11-28 R19-11 AUTOSAR
Release
Management

 Service activation depending on

PNCs

 Retry mechanism in combination

with Cyclic Offers

 EventGroup subscription updates

from different servers

 Clarification of

SubscribeEventgroupNack handling

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR
Release
Management

 Retry subscription feature added

 Load Balancing Option added

 Minor bugfixes

2017-12-08 4.3.1 AUTOSAR
Release
Management

 Several minor bugfixes

 Editorial changes

2016-11-30 4.3.0 AUTOSAR
Release
Management

 Major improvement (SoAd

interaction)

 Several bugfixes

 Editorial changes

2015-07-31 4.2.2 AUTOSAR
Release
Management

 Debugging support marked as

obsolete

 Clarifications

 Minor bugfixes

Document Title Specification of Service
Discovery

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 616

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

 Specification of Service Discovery
AUTOSAR CP R20-11

2 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Document Change History
Date Release Changed by Change Description

2014-10-31 4.2.1 AUTOSAR
Release
Management

 Fixed Service Migration support at

client side

 Support for more efficient SoAd

interface

 Optimized StopSubscribe/Subscribe

load

2014-03-31 4.1.3 AUTOSAR
Release
Management

 Editorial changes

 More detailed endpoint handling

 More detailed message building

2013-10-31 4.1.2 AUTOSAR
Release
Management

 No major changes have been made

 Editorial changes

 Removed chapter(s) on change

documentation

2013-03-15 4.1.1 AUTOSAR
Administration

 Initial Release

 Specification of Service Discovery
AUTOSAR CP R20-11

3 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

 Specification of Service Discovery
AUTOSAR CP R20-11

4 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Table of Contents

1 Introduction and functional overview ... 8

2 Acronyms and abbreviations.. 9

3 Related documentation .. 10

3.1 Input documents ... 10

3.2 Related standards and norms .. 10

4 Constraints and assumptions ... 11

4.1 Limitations ... 11

4.2 Applicability to car domains .. 11

5 Dependencies to other modules .. 12

5.1 AUTOSAR BSW Scheduler .. 12

5.2 AUTOSAR BSW Mode Manager .. 12

5.3 AUTOSAR Socked Adaptor .. 12

5.4 AUTOSAR Default Error Tracer ... 12

5.5 AUTOSAR Diagnostic Event Manager ... 12

5.6 File structure ... 13

5.6.1 Code file structure ... 13

5.6.2 Header file structure .. 13

6 Requirements traceability .. 14

7 Functional specification .. 15

7.1 Background & Rationale ... 15

7.2 Requirements .. 17

7.2.1 General requirements ... 17

7.2.2 Ethernet Communication ... 19

7.2.3 State Handling ... 20

7.2.4 Interaction with Socket Adaptor .. 22

7.2.5 Subscribe Eventgroup retry handling .. 24

7.3 Message format .. 26

7.3.1 Request ID ... 27

7.3.2 Protocol Version field .. 27

7.3.3 Interface Version field ... 28

7.3.4 Message Type field ... 28

7.3.5 Return Code field .. 28

7.3.6 Flags field .. 29

7.3.7 Reserved field ... 30

7.3.8 Entries Array .. 30

7.3.9 Options Array .. 37

7.3.10 Entries referencing Options ... 50

7.4 Service Discovery Entry Types ... 52

7.4.1 Entries for Services (common requirements) ... 52

7.4.2 FindService entry .. 53

7.4.3 OfferService entry ... 55

7.4.4 Building OfferService entries ... 57

7.4.5 StopOfferService entry .. 58

 Specification of Service Discovery
AUTOSAR CP R20-11

5 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.4.6 Eventgroup Entries (Common requirements) ... 58

7.4.7 SubscribeEventgroup entry ... 59

7.4.8 StopSubscribeEventgroup entry ... 60

7.4.9 SubscribeEventgroupAck entry ... 61

7.4.10 SubscribeEventgroupNack entry ... 61

7.4.11 Building SubscribeEventgroup entries ... 62

7.5 Sending and Receiving of Messages ... 63

7.5.1 Sequence for message transmission .. 64

7.5.2 Sequence for message reception ... 64

7.5.3 Receiving Entries .. 65

7.6 Timings and repetitions for Server Service and Event Handlers 70

7.6.1 Initial Wait Phase for Server Services... 70

7.6.2 Repetition Phase for Server Services ... 72

7.6.3 Main Phase for Server Services ... 75

7.6.4 Fan out control .. 77

7.6.5 Sharing of SdServerTimer ... 78

7.7 Timings and repetitions for Client Service and Consumed Eventgroups 80

7.7.1 Down Phase for Client Services ... 80

7.7.2 Initial Wait Phase for Client Services .. 81

7.7.3 Repetition Phase for Client Services .. 83

7.7.4 Main Phase for Client Services ... 85

7.7.5 Fan in control ... 90

7.7.6 Sharing of SdClientTimer .. 92

7.8 Handling of SdServiceGroupS .. 94

7.8.1 SdServiceGroup definitions ... 94

7.9 Extended Production Errors ... 95

7.10 Error classification .. 97

7.10.1 Development Errors ... 97

7.10.2 Runtime Errors ... 97

7.10.3 Transient Faults ... 98

7.10.4 Production Errors ... 98

7.10.5 Extended Production Errors ... 98

8 API specification ... 99

8.1 Imported Types ... 99

8.2 Type definitions ... 99

8.2.1 Sd_ConfigType .. 99

8.2.2 Sd_ServerServiceSetStateType ... 100

8.2.3 Sd_ClientServiceSetStateType ... 101

8.2.4 Sd_ConsumedEventGroupSetStateType ... 101

8.2.5 Sd_ClientServiceCurrentStateType .. 101

8.2.6 Sd_ConsumedEventGroupCurrentStateType 102

8.2.7 Sd_EventHandlerCurrentStateType ... 102

8.2.8 Sd_ConfigOptionStringType ... 102

8.2.9 Sd_ServiceGroupIdType ... 104

8.3 Function definitions ... 104

8.3.1 Sd_Init ... 104

8.3.2 Sd_GetVersionInfo .. 106

8.3.3 Sd_ServerServiceSetState ... 107

8.3.4 Sd_ClientServiceSetState ... 109

 Specification of Service Discovery
AUTOSAR CP R20-11

6 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.3.5 Sd_ConsumedEventGroupSetState ... 111

8.3.6 Sd_LocalIpAddrAssignmentChg ... 113

8.3.7 Sd_SoConModeChg ... 115

8.3.8 Sd_ServiceGroupStart .. 116

8.3.9 Sd_ServiceGroupStop .. 116

8.4 Call-back notifications ... 117

8.4.1 Sd_RxIndication .. 117

8.5 Scheduled functions ... 118

8.5.1 Sd_MainFunction .. 118

8.6 Expected Interfaces .. 120

8.6.1 Mandatory Interfaces... 120

8.6.2 Optional Interfaces .. 121

8.6.3 Configurable Interfaces ... 122

9 Sequence diagrams ... 124

9.1 CLIENT / SERVER: Sd_RxIndication ... 124

9.2 SERVER: Response Behavior ... 125

9.3 CLIENT: Response Behavior ... 126

9.4 SERVER: buildOfferServiceEntry ... 128

9.5 CLIENT: buildSubscribeEventgroupEntry .. 129

9.6 SERVER: buildSubscribeEventgroupAckEntry .. 130

9.7 CLIENT / SERVER: TransmitSdMessage .. 131

9.8 SERVER: AddClientToFanOut ... 132

9.9 SERVER: Start .. 133

9.10 CLIENT: Start .. 133

10 Containers and configuration parameters .. 135

10.1 How to read this chapter ... 135

10.2 Containers and configuration parameters .. 135

10.2.1 Sd ... 135

10.2.2 SdGeneral .. 137

10.2.3 SdConfig .. 139

10.2.4 SdCapabilityRecordMatchCallout .. 140

10.2.5 SdInstance ... 140

10.2.6 SdServiceGroup ... 142

10.2.7 SdClientTimer .. 142

10.2.8 SdServerTimer ... 147

10.2.9 SdInstanceTxPdu ... 150

10.2.10 SdInstanceMulticastRxPdu .. 151

10.2.11 SdInstanceUnicastRxPdu .. 152

10.2.12 SdServerService .. 153

10.2.13 SdClientService ... 158

10.2.14 SdClientCapabilityRecord .. 164

10.2.15 SdConsumedEventGroup .. 165

10.2.16 SdConsumedMethods ... 168

10.2.17 SdEventHandler ... 169

10.2.18 SdEventHandlerMulticast .. 172

10.2.19 SdEventHandlerTcp ... 173

10.2.20 SdEventHandlerUdp .. 174

10.2.21 SdProvidedMethods ... 176

10.2.22 SdServerCapabilityRecord .. 177

 Specification of Service Discovery
AUTOSAR CP R20-11

7 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.23 SdInstanceDemEventParameterRefs .. 178

10.2.24 SdBlacklistedVersions ... 179

10.3 Published Information ... 180

 Specification of Service Discovery
AUTOSAR CP R20-11

8 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

1 Introduction and functional overview

The AUTOSAR Service Discovery module offers functionality to detect and offer
available services – i.e. functional entities – within the vehicle network. To do so, it
makes use of the IP Multicast and so called SOME/IP-SD messages.

The Service Discovery module (Sd) is located between the AUTOSAR BSW Mode
Manager module (BswM) and the AUTOSAR Socket Adaptor module (SoAd).

Figure 1 – Interaction of the AUTOSAR Service Discovery module

 Specification of Service Discovery
AUTOSAR CP R20-11

9 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

BswM Basis software manager

ECU Electronic Control Unit

DEM Diagnostic Event Manager

DET Default Error Tracer

SD Service Discovery

Sd Service Discovery Module in AUTOSAR

SoAd Socket Adaptor

SOME/IP Scalable service-Oriented MiddlwarE over IP

SOME/IP-SD SOME/IP Service Discovery

 Specification of Service Discovery
AUTOSAR CP R20-11

10 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

3 Related documentation

3.1 Input documents

[1] AUTOSAR Layered Software Architecture:
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] AUTOSAR Basis Software Mode Manager:
AUTOSAR_SWS_BSWModeManager.pdf

[3] AUTOSAR Socket Adaptor:

AUTOSAR_SWS_SocketAdaptor.pdf

[4] AUTOSAR SRS BSW General
AUTOSAR_SRS_BSWGeneral.pdf

[5] AUTOSAR PRS SOME/IP Service Discovery Protocol
AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf

[6] AUTOSAR RS SOME/IP Service Discovery Protocol
AUTOSAR_RS_SOMEIPServiceDiscoveryProtocol.pdf

[7] AUTOSAR General Specification for Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related standards and norms

N/A

http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/02_Auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/01_Standard/AUTOSAR_SWS_BSWModeManager.pdf
http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/01_Standard/AUTOSAR_SWS_SocketAdaptor.pdf
http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/01_Standard/AUTOSAR_SRS_BSWGeneral.pdf

 Specification of Service Discovery
AUTOSAR CP R20-11

11 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

4 Constraints and assumptions

4.1 Limitations

Although the AUTOSAR SD is able to respond to wildcard requests (ANY) for
Service ID, Instance ID, Major Version, and Minor Version, this module is only able to
send wildcard finds for Minor Version.

This document does not yet contain trace links to the SRS Ethernet, therefore, the
trace table is empty.

Load Balancing Option (Priority field and Weight field) can be configured for the
OfferServices. However, the Client does not evaluate these fields.

4.2 Applicability to car domains

N/A

 Specification of Service Discovery
AUTOSAR CP R20-11

12 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

5 Dependencies to other modules

5.1 AUTOSAR BSW Scheduler

The BSW Scheduler calls the main functions of the Service Discovery module, which
is necessary for the cyclic processes of the Service Discovery.

5.2 AUTOSAR BSW Mode Manager

The BswM module provides the link between the generic mode requests and the
service requests.

5.3 AUTOSAR Socked Adaptor

The Socked Adaptor hands over service requests between the Ethernet Stack and
the Service Discovery Module.

The Service Discovery module shall be able to activate and de-activate the PDU
routing from and to TCP/IP-sockets and trigger the initial transport of events
(triggered transmit).

The SoAds Socket Connection Table needs to be pre-configured to receive the
unicast and multicast messages sent by Service Discovery modules of other ECUs.
As the ECU might be connected to multiple (virtual) networks, there can exist multiple
Service Discovery Instances, which may have multiple Socket Connection Table
entries. The triples of Unicast Rx, Multicast Rx, and Tx PduIDs for each (virtual)
interface need to be configured in the SoAd and known to the Service Discovery
module.

Additionally the Service Discovery module updates endpoint information (IP address
and port number) in socket connections (SoAdSocketConnection), which the Service
Discovery module extracts from received Service Discovery messages.

For robustness reasons these UDP Sockets should only be used for SD messages

and the option SoAdSocketUdpStrictHeaderLenCheckEnabledshould be

turned on.

5.4 AUTOSAR Default Error Tracer

In order to be able to report development errors, the Service Discovery module has
to have access to the error hook of the Default Error Tracer.

5.5 AUTOSAR Diagnostic Event Manager

In order to be able to report production errors the Service Discovery module has to
have access to the Diagnostic Event Manager.

 Specification of Service Discovery
AUTOSAR CP R20-11

13 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

5.6 File structure

5.6.1 Code file structure

[SWS_SD_00001]⌈
The code file structure shall not be defined within this specification completely. At this
point it shall be pointed out that the code-file structure shall include the following files
named:

- Sd_Lcfg.c – for link time configurable parameters and
- Sd_PBcfg.c – for post build time configurable parameters.

These files shall contain all link time and post-build time configurable parameters.
⌋()

5.6.2 Header file structure

[SWS_SD_00003] ⌈
The module shall include the Dem.h file. By this inclusion, the APIs to report errors
as well as the required Event Id symbols are included.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

14 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

6 Requirements traceability

Requirement Description Satisfied by

 Specification of Service Discovery
AUTOSAR CP R20-11

15 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7 Functional specification

7.1 Background & Rationale

The main tasks of the Service Discovery Module are managing the availability of
functional entities called services in the in-vehicle communication as well as
controlling the send behavior of event messages. This allows sending only event
messages to receivers requiring them (Publish/Subscribe). The solution described
here is also known as SOME/IP-SD (Scalable service-Oriented MiddlewarE over IP –
Service Discovery).

With Service Discovery different ECUs can offer Service Instances and find available
Service Instances within the vehicle network. An ECU can stop offering a Service
Instance it was offering before. Later finds to such a service instance will remain
unanswered. Service Instances are single implementations of a service that is
defined by its service interface. In the AUTOSAR context, a find is an operation to
identify available Service Instances and their locations.

In addition to the status of Service Instances, the Service Discovery is able to control
sending special messages called events. These events are grouped into
Eventgroups, which the Service Discovery can turn on/off in a Publish/Subscribe
manner; thus, turning the sending and receiving of the events of this Eventgroup
on/off.

For the remainder of this document, the following definitions apply:

 Service – A functional entity that offers an interface.

 Service Instance – A single instance of the Service.

 Offer – A message entry that offers a Service Instance.

 Stop Offer – A message that stops offering a Service Instance.

 Find – A message entry used to find a Service Instance.

 Event – a message send by an ECU implementing a Service Instance to an
ECU using this Service Instance.

 Eventgroup – A logical grouping of 1 or more events. An Eventgroup is part of
a Service.

Figure 2 shows the interaction between Services and Eventgroups. On the abstract
level, the service can contain zero to many Eventgroups. However, when creating the
overall system, this information has to be configured into different ECUs with different
roles (clients and servers). When instancing the Services and the contained
Eventgroups, the ServerServices and ClientServices as well as the EventHandlers
and ConsumedEventgroups are instantiated from the Services and Eventgroups.

A local ECU needs to deal with two different kinds of services:

 Server Services – The local ECU offers Server Service Instances (i.e. located
locally) to the rest of the vehicle and can be considered the server for this
Service Instance.

 Client Services – The local ECU may use Server Service Instances offered by
another ECU inside the vehicle and can be considered a client to this Service
Instance.

 Specification of Service Discovery
AUTOSAR CP R20-11

16 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

For Server Services the local ECUs Service Discovery module has to (server role):

 Offer the local service, when it is available; i.e. the SWC(s) offering the service
are ready and the service is available in the current state of the ECU.

 Take back the offer of the local service (stop offer), when the service is no
longer available.

 Answer and respond to finds of other ECUs.

For Client Services the local ECUs Service Discovery module has to (client role):

 Listen for offers and finds depending of the configuration store this information
in volatile memory.

 Listen for stop offers and depending of the configuration store this information
in volatile memory.

 Send finds depending on the state of the current ECU and its SWCs.

Service Discovery can be used to manage Publish/Subscribe relationships as well. In
the Service Discovery based Publish/Subscribe use-case one ECU
(Publish/Subscribe Client with ConsumedEventgroup) is interested in receiving some
data from (subscribing to) another ECU (Publish/Subscribe Server with
EventHandler).

While the Subscribe is defined explicitly in the SD message, the Publish is based on
the availability of the service Instance itself (OfferService entry). Based on the offered
Service Instance the Publish/Subscribe Client may subscribe via
SubscribeEventgroup entries. The Publish/Subscribe Server will now use this
subscription to register the Publish/Subscribe Client as an interested party in some
information specified by the subscription and start sending that information to the
Publish/Subscribe Client pending some event or time-out.

As optimization, the SD supports sending event messages to multiple clients using
single multicast messages instead of a unicast message per client.

ServerService ClientService

EventHandler ConsumedEventgroup

1 *

1

*

1

*

1 *

«interface»

Service

«interface»

Eventgroup

1

*

Services and Eventgroups Instanciated Services and Eventgroups

Figure 2 – Overview of Services and Eventgroups

 Specification of Service Discovery
AUTOSAR CP R20-11

17 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.2 Requirements

7.2.1 General requirements

[SWS_SD_00400]⌈
It shall be possible to configure the Service Discovery module as an optional
AUTOSAR BSW Module. Please refer to the SystemTemplate for configuration.
⌋()

[SWS_SD_00004]⌈
The Service Discovery shall implement a main function, which shall be called

cyclically according to configuration parameter SdMainFunctionCycleTime.
⌋()

[SWS_SD_00005]⌈
The Service Discovery module shall store the ServiceModeRequest, which is
provided via the BswM by calling the following APIs:

 Sd_ServerServiceSetState() and Sd_ClientServiceSetState(),
respectively, If the SdServerService and SdClientSerivce, respectively, is NOT
referencing a SdServiceGroup

 Sd_ServiceGroupStart and SdServiceGroupStop, if the SdServerService and
SdClientService, respectively is referencing a SdServiceGroup

 Sd_ConsumedEventGroupSetState(), if dedicated SdEventGroupS are
requested by a SdClientService. (Note: This API call is allowed independ of a
reference to a SdServiceGroup of a SdClientService)

 Sd_EventHandlerSetState() does currently not exist, since this state is
directly deduced from the state of a Server Service by the Service Discovery.

⌋()

Note:
Based on the interaction with SWCs, the following modes can be requested by the
BswM module:

Server SWCs via Sd_ServerServiceSetState() or,
Sd_ServiceGroupStart() and Sd_ServiceGroupStop(), respectively:

- SD_SERVER_SERVICE_DOWN

- SD_SERVER_SERVICE_AVAILABLE

Client SWCs via Sd_ClientServiceSetState() or,
Sd_ServiceGroupStart() and Sd_ServiceGroupStop(), respectively:

- SD_CLIENT_SERVICE_RELEASED

- SD_CLIENT_SERVICE_REQUESTED

Client SWCs via Sd_ConsumedEventGroupSetState()

- SD_CONSUMED_EVENTGROUP_RELEASED

- SD_CONSUMED_EVENTGROUP_REQUESTED

 Specification of Service Discovery
AUTOSAR CP R20-11

18 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

“SD_SERVER_SERVICE_DOWN” implies that the local SWC(s) offering this Service

Instance are not ready to communicate,

“SD_SERVER_SERVICE_AVAILABLE” implies that the local SWC(s) offering this

Service Instance are ready to communicate,

“SD_CLIENT_SERVICE_RELEASED” implies that the local SWC(s) using this Service

Instance do not need to communicate with this Service Instance,

“SD_CLIENT_SERVICE_REQUESTED” implies that the local SWC(s) using this

service is ready to communicate with this Service Instance and needs this Service
Instance,

 “SD_CONSUMED_EVENTGROUP_RELEASED” implies that the local SWC(s) using this

Consumed Eventgroup do not need the events of this Consumed Eventgroup,

“SD_CONSUMED_EVENTGROUP_REQUESTED” implies that the local SWC(s) using this

Consumed Eventgroup need the events of this Consumed Eventgroup.

[SWS_SD_00007]⌈
The following CurrentStates shall be available for reporting to BswM module via

BswM_Sd_ClientServiceCurrentState(),

BswM_Sd_ConsumedEventGroupCurrentState(), and

BswM_Sd_EventHandlerCurrentState() respectively:

- SD_CLIENT_SERVICE_DOWN

- SD_CLIENT_SERVICE_AVAILABLE

- SD_CONSUMED_EVENTGROUP_DOWN

- SD_CONSUMED_EVENTGROUP_AVAILABLE

- SD_EVENT_HANDLER_RELEASED

- SD_EVENT_HANDLER_REQUESTED

⌋()

Note:

“SD_CLIENT_SERVICE_DOWN” tells the local SWC(s) that this Service Instance is

not available,

“SD_CLIENT_SERVICE_AVAILABLE” tells the local SWC(s) that this Service

Instance is available,

“SD_CONSUMED_EVENTGROUP_DOWN” tells the local SWC(s) that this Consumed

Eventgroup is not currently subscribed,

“SD_CONSUMED_EVENTGROUP_AVAILABLE” tells the local SWC(s) that this

Consumed Eventgroup is currently subscribed (i.e. events are received),

 Specification of Service Discovery
AUTOSAR CP R20-11

19 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

“SD_EVENT_HANDLER_RELEASED” tells the local SWC(s) that no client is currently

subscribed to this Eventgroup,

“SD_EVENT_HANDLER_REQUESTED” tells the local SWC(s) that at least one client is

currently subscribed to this Eventgroup.

[SWS_SD_00011]⌈
Every configured Server Service Instance shall have an ECU wide, unique

SdServerServiceHandleId.
⌋()
[SWS_SD_00437]⌈
Every configured Client Service Instance shall have an ECU wide, unique

SdClientServiceHandleId.
⌋()

[SWS_SD_00438]⌈
Every configured Consumed Event Group shall have an ECU wide, unique
SdConsumedEventGroupHandleId.
⌋()

[SWS_SD_00439]⌈
Every configured Event Handler shall have an ECU wide, unique
SdEventHandlerHandleId.
⌋()

Note for SWS_SD_00011, _00437, _00438, and _00439:
The IDs defined by the above requirements are needed in order to identify the
Service Instances and Eventgroups in the control API between Sd and BswM.

This is even valid for Instances or Eventgroups with the same Service ID and/or the
same Service Instance ID.

7.2.2 Ethernet Communication

[SWS_SD_00013]⌈
Every Service Discovery Configuration Instance (see configuration container

SdInstance) shall have at least one TxPdu ID, one RxPdu ID for Unicast, and one

RxPdu ID for Multicast (see configuration parameter SdInstanceTxPdu,

SdInstanceUnicastRxPdu, and SdInstanceMulticastRxPdu respectively).
⌋()

[SWS_SD_00017]⌈
For different links, separate Service Discovery instance containers shall be
configured.
⌋()

Note:
Links in this regards also includes different virtual links using Ethernet VLANs.

 Specification of Service Discovery
AUTOSAR CP R20-11

20 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00697]⌈
A SD Instance does only support a single Address Family (i.e. IPv4 or IPv6). This
address family shall be learned by means of the SoAd configuration of
SdInstanceTxPdu, SdInstanceUnicastRxPdu, and SdInstanceMulticastRxPdu (local
address).

⌋()

[SWS_SD_00723]⌈
During initialization of the SD module, the API SoAd_OpenSoCon() shall be called

for all Socket Connections associated with SdInstanceTxPdu,

SdInstanceUnicastRxPdu and SdInstanceMulticastRxPdu.

⌋()

Note:
The SoAd module needs to be initialized before the SD module is initialized.

Note:
An implementer has to guarantee that SoAd_SetUniqueRemoteAddr(),
SoAd_GetLocalAddr(), and SoAd_SetRemoteAddr() can never return errors by
validating the source code and configuration of Service Discovery and Socket
Adaptor. Failures of SoAd_SetUniqueRemoteAddr(), SoAd_GetLocalAddr(), and
SoAd_SetRemoteAddr() cannot be recovered from.

7.2.3 State Handling

[SWS_SD_00019]⌈
The Service Discovery module shall store the status of all statically configured
Service Instances and Eventgroups separately.
⌋()

[SWS_SD_00020]⌈
After initialization of the Service Discovery module by the call of the API Sd_Init(),

all configured Server Service Instances shall have the state

“SD_SERVER_SERVICE_DOWN”, unless a Server Service Instance has

SdServerServiceAutoAvailable set to true, then the state shall be set to

“SD_SERVER_SERVICE_AVAILABLE”.
⌋()

Note:

SdServerServiceAutoAvailable set to true, is only allowed for Server Services

which are NOT referencing a SdServiceGroup.

[SWS_SD_00021]⌈
After initialization of the Service Discovery module by calling of the API Sd_Init(),

all configured Client Service Instances shall have the state

“SD_CLIENT_SERVICE_RELEASED”, unless a Client Service Instance has

SdClientServiceAutoRequired set to true, then the state shall be set to

“SD_CLIENT_SERVICE_REQUESTED”.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

21 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Note:

SdClientServiceAutoRequire set to true, is only allowed for Client Services

which are NOT referencing a SdServiceGroup.

[SWS_SD_00440]⌈
After initialization of the Service Discovery module by calling of the API Sd_Init(),

all configured Eventgroups shall have the state “SD_CONSUMED_EVENTGROUP_

RELEASED”, unless a Consumed Eventgroup has

“SdConsumedEventGroupAutoRequired” set to true, then the state shall be set

to “SD_CONSUMED_EVENTGROUP_REQUESTED” as soon as the associated Client

Service Instance is requested.
⌋()

[SWS_SD_00402]⌈
The Service Discovery module shall store all IP address assignment states
referenced by server and client Service Instances.
⌋()

[SWS_SD_00442]⌈
If Sd_ConsumedEventGroupSetState is called with

SD_CONSUMED_EVENTGROUP_REQUESTED while its Client Service Instance is still

released (SD_CLIENT_SERVICE_RELEASED) E_NO_OK shall be returned.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

22 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00443]⌈
If a SdClientService is set to SD_CLIENT_SERVICE_RELEASED (via
Sd_ClientServiceSetState() or Sd_ServiceGroupStop()) while one or
more of its Eventgroups are still requested
(SD_CONSUMED_EVENTGROUP_REQUESTED) the Service Discovery shall interpret
this the same way as these Eventgroups were called with
SD_CONSUMED_EVENTGROUP_RELEASED first.
⌋()

7.2.4 Interaction with Socket Adaptor

[SWS_SD_00024]⌈
The Service Discovery module shall be able to enable/disable routing groups within

the SoAd module using the APIs SoAd_EnableRouting(),

SoAd_DisableRouting(), SoAd_EnableSpecificRouting(), and

SoAd_DisableSpecificRouting() for Server- and Client Service Instances.
⌋()

[SWS_SD_00699]⌈The Service Discovery module shall be able to trigger the sending

of initial Events using the API SoAd_IfSpecificRoutingGroupTransmit().
⌋()

[SWS_SD_00026]⌈
The Service Discovery module shall be able to reference RoutingGroup(s) per
Service Instance/Eventgroup. See the following configuration parameters:

 SdClientServiceActivationRef (in SdConsumedMethods)

 SdConsumedEventGroupMulticastActivationRef

 SdConsumedEventGroupTcpActivationRef

 SdConsumedEventGroupUdpActivationRef

 SdServerServiceActivationRef (in SdProvidedMethods)

 SdEventActivationRef (in SdEventHandlerMulticast)

 SdEventActivationRef (in SdEventHandlerTcp)

 SdEventTriggeringRef (in SdEventHandlerTcp)

 SdEventActivationRef (in SdEventHandlerUdp)

 SdEventTriggeringRef (in SdEventHandlerUdp)

⌋()

[SWS_SD_00700]⌈
The Service Discovery module shall be able to reference SocketConnections and
SocketConnectionGroups per Service Instance/Eventgroup. See the following
configuration parameters:

 SdClientServiceTcpRef (Service Instance and Eventgroups)

 SdClientServiceUdpRef (Service Instance and Eventgroups)

 SdConsumedEventGroupMulticastGroupRef (Eventgroup)

 SdServerServiceTcpRef (Service Instance and Eventgroups)

 SdServerServiceUdpRef (Service Instance and Eventgroups)

 Specification of Service Discovery
AUTOSAR CP R20-11

23 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

 SdMulticastEventSoConRef in SdEventHandlerMulticast

(Eventgroup)

⌋()

[SWS_SD_00029]⌈
The Service Discovery module shall only call SoAd_IfTransmit() if an IP address

is assigned; i.e.: Sd_LocalIpAddrAssignmentChg() has been called with the

current state TCPIP_IPADDR_STATE_ASSIGNED.
⌋()

[SWS_SD_00709]⌈
Ignore, if SoAd_IfTransmit() returns E_NOT_OK.
⌋()

[SWS_SD_00459]⌈
For all SD messages sent and received via the Socket Adaptor module, the header
mode shall be activated.
⌋()

[SWS_SD_00460]⌈
For all SD messages sent and received via the Socket Adaptor module, the

SoAdTxPduHeaderId and the SoAdRxPduHeaderId shall be set to 0xFFFF8100

respectively.
⌋()

Note: This ensures that the SoAd creates the first part of the SOME/IP header (32bit
Message ID followed by a 32bit Length field) as needed for SOME/IP-SD. The
remainder of the SD messages is created by this module (see chapter 7.3).

[SWS_SD_00481]⌈
Every wildcard socket connection shall be reset to wildcard using

SoAd_ReleaseRemoteAddr() if all of the following conditions apply:

 The remote address of a socket connection has been set by SD.

 The socket connection is not used by a ClientService anymore. I.e. no Offer
was received, a Stop Offer was received or the TTL has expired.

 The socket connection is not used by an Eventhandler anymore. I.e. the client
has unsubscribed all Eventgroups using this socket connection. The socket
connection shall not be reset if the routings get disabled because the

SdEventHandlerMulticastThreshold was reached.

⌋()

Note: This requirement does not apply to the socket connections used for service
discovery.

 Specification of Service Discovery
AUTOSAR CP R20-11

24 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.2.5 Subscribe Eventgroup retry handling

The Subscribe Eventgroup retry mechanism is an optional feature for ClientServices.
This could be used to speed up the recovery if a SOME/IP-SD message is lost (e.g.
SubscribeEventGroupAck) and the interval between cycle offers are to large to
get a fast recovery, or to speed up subscriptions if an Eventgroup is requested
somewhere between two cyclic offers. The timing behavior of Subscribe Eventgroup
retry mechanism could be configured per ClientService and has to match to the
timing behavior of the corresponding ServerService (see TPS SysT constr_5095).
For ServerServices which have their TLL (SdServerTimerTTL) set to 0xFFFFFF and
their interval between cyclic offers in the main phase
(SdServerTimerOfferCyclicDelay) set to 0, it's possible to set the Subscribe
Eventgroup retry to 0xFF (see TPS SysT constr_5096). This would mean to retry the
subscription to a EventGroup as along as the EventGroup is set to
SD_CONSUMED_EVENTGROUP_REQUESTED and no SubscribeEventGroupAck
was received.

[SWS_SD_00735]⌈
The subscribe Eventgroup retry handling shall only be processed for Eventgroups of
a ServerService where

 SdSubscribeEventgroupRetryMax is greater than 0,

 and only if SdSubscribeEventgroupRetryEnable is set to TRUE.
⌋()

[SWS_SD_00736]⌈
If SdSubscribeEventgroupRetryEnable is set to TRUE and
SdSubscribeEventgroupRetryMax is set to a value greater than 0, every time a
Consumed Eventgroup transit to the state
SD_CONSUMED_EVENTGROUP_REQUESTED, the following actions shall be done:

 the corresponding client service subscription retry delay timer shall be started

and set to SdSubscribeEventgroupRetryDelay, if the timer is not already

running

 the Eventgroup subscription retry counter shall be initialized with 1
⌋()

[SWS_SD_00737]⌈
If the client service subscription retry delay timer elapsed and the counts of retries of

subscription (SdSubscribeEventgroupRetryMax) did not exceed for a configured

Eventgroup, the subscription for the Eventgroup shall be re-triggered by sending a
combination of StopSubscribeEventgroup/SubscribeEventgroup, and the retry
counter shall be incremented. If the counts of retries of subscription

(SdSubscribeEventgroupRetryMax) exceeds, the ServiceDiscovery module

shall raise the runtime error

"SD_E_COUNT_OF_RETRY_SUBSCRIPTION_EXCEEDED".

⌋()

[SWS_SD_00738]⌈

 Specification of Service Discovery
AUTOSAR CP R20-11

25 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

The retry of a subscription for a requested Eventgroup shall be stopped for the
following conditions:

 If a SubscribeEventGroupAck or SubscribeEventGroupNack was
received for the requested Eventgroup.

 If the count of retries exceeds SdEventgroupSubscribeRetryMax of the
requested Eventgroup.

 If the requested Eventgroup is set to
"SD_CONSUMED_EVENTGROUP_RELEASED".

⌋()

[SWS_SD_00739]⌈
If SdSubscribeEventgroupRetryEnable is set to TRUE and
SubscribeEventgroupRetryMax is set to 0xFF, the retries of subscription shall
continue as long as all of the following conditions are fulfilled:

 the corresponding Eventgroup is set to
"SD_CONSUMED_EVENTGROUP_REQUESTED"

 no SubscribeEventGroupAck or no SubscribeEventGroupNack was
received

⌋()

[SWS_SD_00740]⌈
The client service subscription retry delay timer shall be cancelled, if the retry is
finished for all Eventgroups of a ClientService according to SWS_SD_00738.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

26 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.3 Message format

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Flags [8 bit] Reserved [24 bit]

Length of Entries Array [32 bit]

Entries Array

Length of Options Array [32 bit]

Options Array

C
o

v
e

re
d

 b
y
 L

e
n

g
th

C
o

v
e

re
d

 b
y
 L

e
n

g
th

Figure 3 – Overview of the Service Discovery message format

[SWS_SD_00037]⌈
If not defined otherwise, all fields in the Service Discovery messages shall be in
Network Byte Order (i.e. Big Endian Byte Order).
⌋()

[SWS_SD_00030]⌈
All Service Discovery messages shall follow the Service Discovery Message layout
shown in Figure 3.
⌋()

[SWS_SD_00031]⌈
The Service Discovery message format shall contain the following fields in the
following order:

 Request ID (Client ID / Session ID) [32 Bit]

 Protocol Version [8 bit]

 Interface Version [8 Bit]

 Message Type [8 bit]

 Return Code [8 bit]

 Flags [8 bit]

 Reserved [24 bit]

 Length of Entries Array [32 bit]

 Entries Array (length in bytes defined by the “Length of Entries Array”)

 Length of Options Array [32 bit]

 Option Array (length in bytes defined by the “Length of Options Array”)

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

27 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.3.1 Request ID

This chapter describes the requirements related to the Request ID field. The Request
ID is made up of Client ID and Session ID. While the Client ID is not used for Service
Discovery, the Session ID is used to detect the reboot or restart of other Service
Discovery instances in the vehicle in order to repair the local state of the Service
Discovery module.

[SWS_SD_00032]⌈
The Request ID field shall consist of a Client ID field [16 bits] and a Session ID field
[16 bits].
⌋()

[SWS_SD_00033]⌈
The Client ID shall be set statically to 0x0000.
⌋()

[SWS_SD_00034]⌈
After initialization of the Service Discovery Module, the Session ID for messages sent
by the local ECU shall be 0x0001.

⌋()

[SWS_SD_00035]⌈
The Session ID shall be incremented and stored separately for multicast and every

single unicast communication partner every time SoAd_IfTransmit() is called.
⌋()

Note to SWS_SD_00034 and SWS_SD_00035: This means that the first SD
message sent out to the multicast address has Session ID 0x0001 as well as the first
SD message sent out to any unicast communication partner has the Session ID
0x0001 as well.
⌋()

[SWS_SD_00036]⌈
Every time, the Session ID wraps around, the Session ID shall restart with the value
0x0001.
⌋()

Note to SWS_SD_00036: Wrap around means that the current value of the Session
ID is the max value (0xFFFF) and the next increment would mean the counter must
start again.

7.3.2 Protocol Version field

The Protocol Version field is used to describe the current version of SOME/IP.

[SWS_SD_00140]⌈
The length of the Protocol Version field shall be 8 bits.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

28 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00141]⌈
The value for the Protocol Version field shall be statically set to 0x01.
⌋()

7.3.3 Interface Version field

The Interface Version field is used to describe the current version of the SOME/IP
service; i.e. the current version of SOME/IP-SD itself.

[SWS_SD_00142]⌈
The length of the Interface Version field shall be 8 bits.
⌋()

[SWS_SD_00143]⌈
The value for the Interface Version field shall be statically set to 0x01.
⌋()

7.3.4 Message Type field

The Message Type field is used to differentiate the types of SOME/IP messages.
SOME/IP-SD uses only event messages; thus, it always uses the same type.

[SWS_SD_00144]⌈
The length of the Message Type field shall be 8 bits.
⌋()

[SWS_SD_00145]⌈
The value for the Message Type field shall be statically set to 0x02.
⌋()

7.3.5 Return Code field

The Return Code is used to signal whether a request was successfully been
processed. This is not applicable for SOME/IP-SD; therefore, the return code will be
statically set to 0x00.

[SWS_SD_00146]⌈
The length of the Return Code field shall be 8 bits.
⌋()

[SWS_SD_00147]⌈
The Return Code field shall be statically set to 0x00.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

29 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.3.6 Flags field

With the Flags field the SOME/IP-SD header starts. It is used to signal global Service
Discovery information, which includes currently the state of the last reboot as well as
the capability of receiving unicast messages.

[SWS_SD_00149]⌈
The length of the Flags field shall be 8 bits.
⌋()

[SWS_SD_00150]⌈
The first bit of the Flags field (highest order bit) shall be called Reboot Flag.
⌋()

[SWS_SD_00151]⌈
The Reboot Flag shall be set to ‘1’ for all messages after reboot until the Session ID
of the Request ID field wraps and thus starts with 0x0001 again. After that the
Reboot Flag shall be set to ‘0’.
⌋()

[SWS_SD_00445]⌈
The Service Discovery shall keep track of the last received of a communication
partner Session ID value and Reboot Flag value independently for unicast and
multicast. This means that the communication partners values received over
multicast shall not be updated by a unicast message.
⌋()

[SWS_SD_00446]⌈
A reboot of the communication partner shall be detected based on consecutive
Service Discovery messages (for communication partner; unicast and multicast
separated) in the following two ways:

 Reboot Flag changes from ‘0’ to ‘1’ or

 Session ID does not increase, while Reboot Flag stays ‘1’.

⌋()

[SWS_SD_00447]⌈
The Service Discovery may also detect reboots based on the unicast information.
⌋()

[SWS_SD_00448]⌈
A reboot detected with Session ID and Reboot Flag shall lead to expiration of the
local state that is controlled by this communication partner.

In case of a reboot of a server, of which the client uses a service, the client shall
handle the reboot as if a Stop Offer entry was received (see also SWS_SD_00367
for further details)

In case of a reboot of a server, of which the client uses a service, the server shall
handle the reboot as if a StopSubscribeEventgroup entry was received (see also

 Specification of Service Discovery
AUTOSAR CP R20-11

30 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SWS_SD_00345 for further details).
⌋()

[SWS_SD_00152]⌈
The second bit of the Flag field (second highest order bit) shall be called Unicast
Flag.
⌋()

[SWS_SD_00153]⌈
The Unicast Flag of the Flag field shall be set to Unicast Flag and shall be set to ‘1’,
meaning: This ECU supports receiving Unicast messages.
⌋()

[SWS_SD_00154]⌈
Undefined bits within the Flag field shall be statically set to ‘0’.
⌋()

7.3.7 Reserved field

This Reserved field is not currently used and left empty for further enhancements of
the SOME/IP-SD protocol.

[SWS_SD_00155]⌈
The length of the Reserved field shall be 24 bits.
⌋()

[SWS_SD_00156]⌈
All bits of the Reserved field shall be statically set to 0 binary.
⌋()

7.3.8 Entries Array

When SOME/IP-SD find or offers Service Instances or handles subscriptions this is
done by so called entries, which are transported in the entry array of the SOME/IP-
SD message (see Figure 3).
7.3.8.1 Length of Entries Array
[SWS_SD_00157]⌈
The length of the first field of the Entries Array shall be 32 bits.
⌋()

[SWS_SD_00158]⌈
The first field of the Entries Array shall carry the amount of bytes of the Entries Array
(excluding this 32 bit field carrying the length information).
⌋()
7.3.8.2 Entry Format Type 1
Two types of Entries exist: Type 1 Entries for Services and Type 2 Entries for
Eventgroups.

 Specification of Service Discovery
AUTOSAR CP R20-11

31 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00159]⌈
The Type 1 Entries shall have the following layout:

Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Index 1st options Index 2nd options # of opt 1 # of opt 2

Service ID Instance ID

Major Version TTL

Minor Version

Figure 4 – Layout of Type 1 Entries (Entries for Services)

⌋()

[SWS_SD_00160]⌈
The length of the Type 1 Entry shall be 16 bytes.
⌋()

[SWS_SD_00161]⌈
The Type 1 format shall contain the following fields in the following order and sizes:

 Type [8 bits]

 Index 1st option [8 bits]

 Index 2nd option [8 bits]

 # of opt 1 [4 bits]

 # of opt 2 [4 bits]

 Service ID [16 bits]

 Instance ID [16 bits]

 Major Version [8 bits]

 TTL [24 bits]

 Minor Version [32 bits]

⌋()

[SWS_SD_00162]⌈
The Type field of the Type 1 Entry format layout shall carry one of the following
values:

 0x00 to encode FindService

 0x01 to encode OfferService and StopOfferService

⌋()

[SWS_SD_00163]⌈
The “Index First Option Run” field of the Type 1 Entry format layout shall have a fixed
size of 8 bits.
⌋()

[SWS_SD_00164]⌈
The “Index First Option Run” field of the Type 1 Entry format layout shall carry the
index of the first option of the first option run of this entry in the option array.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

32 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00165]⌈
The “Index Second Option Run” field of the Type 1 Entry format layout shall have a
fixed size of 8 bits.
⌋()

[SWS_SD_00166]⌈
The “Index Second Option Run” field of the Type 1 Entry format layout shall carry the
index of the first option of the second option run of this entry in the option array.
⌋()

[SWS_SD_00167]⌈
The “Number of Option 1” field of the Type 1 Entry format layout shall have a fixed
size of 4 bits.
⌋()

[SWS_SD_00168]⌈
The “Number of Option 1” of the Type 1 Entry format layout shall carry the number of
options the first option run uses.
⌋()

[SWS_SD_00169]⌈
The “Number of Option 2” field of the Type 1 Entry format layout shall have a fixed
size of 4 bits.
⌋()

[SWS_SD_00170]⌈
The “Number of Option 2” field of the Type 1 Entry format layout shall carry the
number of options the second option run uses.
⌋()

[SWS_SD_00622]⌈
If the number of options is set to zero, the option run is considered empty.
⌋()
[SWS_SD_00623]⌈
For empty runs the Index (i.e. Index First Option Run and/or Index Second Option
Run) shall be set to zero.
⌋()

[SWS_SD_00624]⌈
Implementations shall accept and process incoming SD messages with option run
length set to zero and option index not set to zero.
⌋()

[SWS_SD_00172]⌈
The Service ID field of the Type 1 Entry format shall have a fixed size of 16 bits.
⌋()

[SWS_SD_00173]⌈
The Service ID field of the Type 1 Entry format layout shall carry the Service ID of the

service, statically configured using the parameter SdServerServiceID and

 Specification of Service Discovery
AUTOSAR CP R20-11

33 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SdClientServiceID, depending on being a server or client entry.
⌋()

[SWS_SD_00174]⌈
The Instance ID field of the Type 1 Entry format layout shall have a fixed size of 16
bits.
⌋()

[SWS_SD_00175]⌈
The Instance ID field of the Type 1 Entry format layout shall carry the Instance ID of
the service, statically configured using the parameter

SdServerServiceInstanceID and SdClientServiceInstanceID, depending

on being a server or client entry.
⌋()

[SWS_SD_00176]⌈
If not a single but all instances are addressed, the Instance ID field of the Type 1
Entry format layout shall be set to 0xFFFF.
⌋()

[SWS_SD_00177]⌈
The Major Version field of the Type 1 Entry format layout shall have a fixed size of 8
bits.
⌋()

[SWS_SD_00178]⌈
The Major Version field of the Type 1 Entry format layout shall carry the

SdServerServiceMajorVersion and SdClientServiceMajorVersion,

depending on being a server or client entry.
⌋()

[SWS_SD_00179]⌈
The TTL field of the Type 1 Entry format layout shall have a fixed size of 24 bits.
⌋()

[SWS_SD_00180]⌈
The TTL field of the Type 1 Entry format layout defines the lifetime of the entry in

seconds configured using the parameter SdServerTimerTTL and

SdClientTimerTTL, except for Stop-Entries, which have a TTL of 0.
⌋()

[SWS_SD_00181]⌈
The Minor Version field of the Type 1 Entry format layout shall have a fixed size of 32
bits.
⌋()

[SWS_SD_00182]⌈
The Minor Version field of the Type 1 Entry format layout shall carry the

 Specification of Service Discovery
AUTOSAR CP R20-11

34 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SdServerServiceMinorVersion and SdClientServiceMinorVersion.
⌋()

7.3.8.3 Entry Format Type 2
The Type 2 Entries format shall be used for Eventgroups.

Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Index 1st options Index 2nd options # of opt 1 # of opt 2

Service ID Instance ID

Major Version TTL

Eventgroup IDReserved (0x000) Counter

Figure 5 – Layout of Type 2 Entries (Entries for Eventgroups)

[SWS_SD_00183]⌈
The length of Type 2 Entries shall be 16 bytes.
⌋()

[SWS_SD_00184]⌈
The Type 2 format shall contain the following fields in the following order and sizes:

 Type [8 bits]

 Index 1st option [8 bits]

 Index 2nd option [8 bits]

 # of opt 1 [4 bits]

 # of opt 2 [4 bits]

 Service ID [16 bits]

 Instance ID [16 bits]

 Major Version [8 bits]

 TTL [24 bits]

 Reserved [12 bits]

 Counter [4 bits]

 Eventgroup ID [16 bits]

⌋()

[SWS_SD_00385]⌈
The Type field of the Type 2 Entry format layout shall carry one of the following
values, depending on the purpose of the message sent:

 0x06 to encode SubscribeEventgroup and StopSubscribeEventgroup

 0x07 to encode SubscribeEventgroupAck and SubscribeEventgroupNack⌋()

[SWS_SD_00386]⌈
The “Index First Option Run” field of the Type 2 Entry format layout shall carry the
index of the first option of the first option run of this entry in the option array.
⌋()

[SWS_SD_00185]⌈
The “Index First Option Run” field of the Type 2 Entry format layout shall have a fixed

 Specification of Service Discovery
AUTOSAR CP R20-11

35 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

size of 8 bits.
⌋()

[SWS_SD_00187]⌈
The “Index Second Option Run” field of the Type 2 Entry format layout shall carry the
index of the first option of the second option run of this entry in the option array.
⌋()

[SWS_SD_00186]⌈
The “Index Second Option Run” field of the Type 2 Entry format layout shall have a
fixed size of 8 bits.
⌋()

[SWS_SD_00387]⌈
The “Number of Option 1” field of the Type 2 Entry format layout shall have a fixed
size of 4 bits.
⌋()

[SWS_SD_00188]⌈
The “Number of Option 1” field of the Type 2 Entry format layout shall carry the
number of options the first option run uses.
⌋()

[SWS_SD_00189]⌈
The “Number of Option 2” field of the Type 2 Entry format layout shall have a fixed
size of 4 bits.
⌋()

[SWS_SD_00190]⌈
The “Number of Option 2” field of the Type 2 Entry format layout shall carry the
number of options the second option run uses.
⌋()

[SWS_SD_00625]⌈
If the number of options is set to zero, the option run is considered empty.

⌋()

[SWS_SD_00626]⌈
For empty runs the Index (i.e. Index First Option Run and/or Index Second Option
Run) shall be set to zero.
⌋()

[SWS_SD_00627]⌈
Implementations shall accept and process incoming SD messages with option run
length set to zero and option index not set to zero.

⌋()

[SWS_SD_00192]⌈
The Service ID field of the Type 2 shall have a fixed size of 16 bits.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

36 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00193]⌈
The Service ID field of the Type 2 Entry format layout shall carry the Service ID of the
eventgroups service, statically configured using the parameter

SdServerServiceID and SdClientServiceID, depending on being a server or

client entry.
⌋()

[SWS_SD_00194]⌈
The Instance ID field of the Type 2 Entry format layout shall have a fixed size of 16
bits.
⌋()

[SWS_SD_00195]⌈
The Instance ID field of the Type 2 Entry format layout shall carry the Instance ID of
the eventgroups service statically configured using the parameter

SdServerServiceInstanceID and SdClientServiceInstanceID, depending

on being a server or client entry.
⌋()

[SWS_SD_00197]⌈
The Major Version field of the Type 2 Entry format layout shall have a fixed size of 8
bits.
⌋()

[SWS_SD_00198]⌈
The Major Version field of the Type 2 Entry format layout shall carry the

SdServerServiceMajorVersion and SdClientServiceMajorVersion,

depending on being a server or client entry.
⌋()

[SWS_SD_00199]⌈
The TTL field of the Type 2 Entry format layout shall have a fixed size of 24 bits.
⌋()

[SWS_SD_00200]⌈
The TTL field of the Type 2 Entry format layout defines the lifetime of the entry in

seconds configured using the parameter SdServerTimerTTL and

SdClientTimerTTL, except for Stop- or Nack-Entries, which use a TTL of 0.
⌋()

[SWS_SD_00201]⌈
The Reserved field of the Type 2 Entry format layout shall have a fixed size of 12
bits.
⌋()

[SWS_SD_00202]⌈
The Reserved field, which follows the TTL field of the Type 2 Entry format layout,
shall be statically set to 0x000.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

37 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00691]⌈
The Counter field of the Type 2 Entry format layout shall have a fixed size of 4 bits.
⌋()

[SWS_SD_00692]⌈
The Counter field, which follows the Reserved filed of the Type 2 Entry format layout,
is used to differentiate identical Type 2 Entries (e.g. multiple subscriptions to same
Eventgroup).
⌋()

[SWS_SD_00203]⌈
The Eventgroup ID field of the Type 2 Entry format layout shall have a fixed size of
16 bits.
⌋()

[SWS_SD_00204]⌈
The Eventgroup ID field of the Type 2 Entry format layout shall carry the ID of an

Eventgroup, configured using the parameter SdConsumedEventGroupID.
⌋()

[SWS_SD_00476]⌈
Type 2 Entries (Entries for Eventgroups) shall not use “any values” as Service ID (i.e.
0xFFFF), Instance ID (i.e. 0xFFFF), Eventgroup ID (i.e. 0xFFFF), and/or Major
Version (i.e. 0xFF).
⌋()

7.3.9 Options Array

The Option array is the last part of the Service Discovery Message (see Figure 3).
The options in the options array carry additional information.

7.3.9.1 Configuration Option
The Configuration Option transports additional attributes of entries in the Service
Discovery messages. Between 0 and n configuration items can be transported using
the Configuration Option. These configuration items can include for example the
name of the host or the Service.

Type (=0x01)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

Zero-terminated Configuration String

([len]id=value[len]id=value[0])

Figure 6 – Configuration Option

 Specification of Service Discovery
AUTOSAR CP R20-11

38 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00715]⌈
The use of configuration options is limited to Type 1 Entries of any Service-ID and
Type 2 Entries of Service-ID 0xFFFE.
⌋()

[SWS_SD_00205]⌈
The option format shall contain the following fields in the following order and sizes:

 Length [16 bits]

 Type [8 bits]

 Reserved [8 bits]

 Zero-terminated Configuration String (format e.g. for two configuration items
[len]id=value[len]id=value[0])

⌋()

[SWS_SD_00206]⌈
The Length field shall carry the total number of bytes occupied by the configuration
option, excluding the 16 bit Length field and the 8 bit type flag.
⌋()

[SWS_SD_00207]⌈
The Type field of the Configuration Option field shall be statically set to 0x01.
⌋()

[SWS_SD_00208]⌈
The Reserved field of the Configuration Option field shall be statically set to 0x00.
⌋()

[SWS_SD_00292]⌈
The Configuration String shall be constructed as follows from the

SdServerCapabilityRecord and SdClientCapabilityRecord

(Eventgroups of Services with ID 0xFFFE shall include the Services
CapabilityRecord):

 For every SdServerCapabilityRecordKey/

SdServerCapabilityRecordValue or
SdClientServiceCapabilityRecordKey/

SdClientServiceCapabilityRecordValue pair:

o A config_item_string is constructed of the concatenation of key, “=”, and
value.

o The length of this config_item_string is written as uint8 to the
configuration string.

o The config_item_string is appended to the configuration string.

 Append a 0x00 uint8 at the end. This means no further config_item_string
follows.

⌋()

Example for Configuration Option:

 Specification of Service Discovery
AUTOSAR CP R20-11

39 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Type (=0x01)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0010)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)[5] cba

= d[7]x

e 1=f

2 [0]3

Figure 7 – Example for Configuration Option

[SWS_SD_00461]⌈
SdServerCapabilityRecordValue and

SdClientServiceCapabilityRecordValue are allowed to be empty.

This means that after “=” the next length uint8 or “0” follows.
⌋()

[SWS_SD_00466]⌈
Receiving a config_item_string without an “=” sign shall be interpreted as key present
without value.
⌋()

[SWS_SD_00467]⌈
Multiple config_item_string with the same key in a single configuration option shall be
supported.
⌋()

[SWS_SD_00468]⌈
If SdInstanceHostname exists, a key “hostname” with the value set to the string of

this configuration item shall be added to the Configuration Option.
⌋()

[SWS_SD_00293]⌈
Non-SOME/IP-Services exist, that are not identified by a unique 16 Bit Service ID but
a unique value of the key otherserv. These services use the Service ID 0xFFFE and
must always carry a configuration option with an otherserv record. ECUs receiving an
entry with Service ID 0xFFFE shall use the configuration option and the otherserv
record within in order to identify the relevant Service or Eventgroup configuration
item.
⌋()

7.3.9.2 IPv4 Endpoint Option
This chapter describes the fields and values of the IPv4 Endpoint Option, which
transports IP Address, Layer 4 Protocols (e.g. UDP or TCP), and Port Number; thus,
the information needed to communicate with a service.

When receiving a Service Discovery message offering a service and transporting an
IPv4 Endpoint Option, ECUs receiving this message can dynamically configure the
Socket Adaptor for using this service by updating a Socket Connection.

 Specification of Service Discovery
AUTOSAR CP R20-11

40 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Type (=0x04)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0009)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

IPv4-Address [32bit]

Reserved (=0x00) L4-Proto (TCP/UDP…) Port Number

Figure 8 – IPv4 Endpoint Option format

 Specification of Service Discovery
AUTOSAR CP R20-11

41 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00653]⌈
Every OfferService entry shall reference up to two IPv4 Endpoint Options (up to one
for UDP and up to one for TCP) that describe endpoint(s) (IP and Port) the server
accepts methods on and sends events from for this service instance.
⌋()

[SWS_SD_00654]⌈
Different service instances of the same service on the same ECU shall use different
endpoints, so that they can be differentiated by the endpoints. Different services may
share the same endpoints.
⌋()

[SWS_SD_00655]⌈
Every SubscribeEventgroup entry shall reference up to two IPv4 Endpoint Options
(up to one for UDP and up to one for TCP) that describe(s) the endpoints (IP and
Port) the client wishes to receive events. The client shall use these endpoints for
sending methods as well.
⌋()

[SWS_SD_00209]⌈
The Length field of the IPv4 Endpoint Option shall be set to 0x0009.
⌋()

Note: That is the size of this option not including the length and type fields.

[SWS_SD_00210]⌈
The Type field of the IPv4 Endpoint Option shall be statically set to 0x04.
⌋()

[SWS_SD_00211]⌈
The Reserved field of the IPv4 Endpoint Option (followed by the IPv4-Address field)
shall be statically set to 0x00.
⌋()

[SWS_SD_00212]⌈
The IPv4-Address field [32 bits] of the IPv4 Endpoint Option shall be set to the local
IP address of the relevant Service or Eventgroup.
⌋()

[SWS_SD_00213]⌈
The Reserved field of the IPv4 Endpoint Option shall statically be set to 0x00.
⌋()

[SWS_SD_00214]⌈
The Layer 4 Protocol field [8 bits] (L4-Proto) of the IPv4 Endpoint Option shall be set
to one of the following values, depending on the port specified:

 0x06: TCP

 0x11: UDP

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

42 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00215]⌈
The Port Number field [16 bits] of the IPv4 Endpoint Option shall carry the UDP or
TCP port number for the service instance or Eventgroup.
⌋()
7.3.9.3 IPv6 Endpoint Option
This chapter describes the fields and values of the IPv6 Endpoint Option, which is the
same as the IPv4 Endpoint Option except that it transport IPv6 Addresses instead
IPv4 Addresses.

Type (=0x06)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0015)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

Reserved (=0x00) L4-Proto (TCP/UDP…) Port Number

IPv6-Address [128bit]

Figure 9 – IPv6 Endpoint Option format

[SWS_SD_00656]⌈
Every OfferService entry shall reference up to two IPv6 Endpoint Options (up to one
for UDP and up to one for TCP) that describe endpoint(s) (IP and Port) the server
accepts methods on and sends events from for this service instance.
⌋()

[SWS_SD_00657]⌈
Different service instances of the same service on the same ECU shall use different
endpoints, so that they can be differentiated by the endpoints. Different services may
share the same endpoints.
⌋()

[SWS_SD_00658]⌈
Every SubscribeEventgroup entry shall reference up to two IPv6 Endpoint Options
(up to one for UDP and up to one for TCP) that describe(s) the endpoints (IP and
Port) the client wishes to receive events. The client shall use these endpoints for
sending methods as well.
⌋()

[SWS_SD_00216]⌈
The Length field [16 bits] of the IPv6 Endpoint Option shall be set to 0x0015.
⌋()

Note: That is the size of this option not including the length and type fields.

[SWS_SD_00217]⌈
The Type field [8 bits] of the IPv6 Endpoint Option shall be statically set to 0x06.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

43 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00218]⌈
The Reserved field [8 bits] of the IPv6 Endpoint Option (followed by the IPv6-Address
field) of the Configuration Option segment shall be statically set to 0x00.
⌋()

[SWS_SD_00219]⌈
The IPv6-Address field [128 bits] of the IPv6 Endpoint Option shall be set to the local
IP address of the relevant Service or Eventgroup.
⌋()

[SWS_SD_00220]⌈
The Reserved field [8 bits] of the IPv6 Endpoint Option shall statically be set to 0x00.
⌋()

[SWS_SD_00221]⌈
The Layer 4 Protocol field [8 bits] (L4-Proto) of the IPv6 Endpoint Option shall be set
to one of the following values, depending on the port specified:

- 0x06: TCP
- 0x11: UDP

⌋()

[SWS_SD_00222]⌈
The Port Number field [16 bits] of the IPv6 Endpoint Option shall carry the UDP or
TCP port number for the service instance or Eventgroup.
⌋()
7.3.9.4 IPv4 Multicast Option

The IPv4 Multicast Option is used by the server to announce the IPv4 multicast
address, the transport layer protocol (ISO/OSI layer 4), and the port number the
multicast events and multicast notification events are sent to. As transport layer
protocol, only UDP is supported.

Type (=0x14)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0009)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

IPv4-Address [32bit]

Reserved (=0x00) L4-Proto (UDP/…) Port Number

Figure 10 – IPv4 Multicast Option format

[SWS_SD_00659]⌈
IPv4 Multicast Options shall be only referenced by SubscribeEventgroupAck entries,
describing the multicast destination IP address and port multicast events shall be
sent to.
⌋()
[SWS_SD_00390]⌈
The Length field [16 bits] of the IPv4 Multicast Option shall be set to 0x0009.
⌋()

Note: That is the size of this option not including the length and type fields.

 Specification of Service Discovery
AUTOSAR CP R20-11

44 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00391]⌈
The Type field [8 bits] of the IPv4 Multicast Option shall be statically set to 0x14.
⌋()

[SWS_SD_00392]⌈
The Reserved field [8 bits] of the IPv4 Multicast Option (followed by the IPv4-Address
field) of the Configuration Option segment shall be statically set to 0x00.
⌋()

[SWS_SD_00393]⌈
The IPv4-Address field [32 bits] of the IPv4 Multicast Option shall be set to the
Multicast IP address of the Eventgroup.
⌋()

[SWS_SD_00394]⌈
The Reserved field [8 bits] of the IPv4 Multicast Option shall statically be set to 0x00.
⌋()

[SWS_SD_00395]⌈
The Layer 4 Protocol field [8 bits] (L4-Proto) of the IPv4 Multicast Option shall be set
to 0x11 (UDP).
⌋()

[SWS_SD_00396]⌈
The Port Number field [16 bits] of the IPv4 Multicast Option shall carry the port
number for transporting Multicast Events of the Eventgroup.
⌋()
7.3.9.5 IPv6 Multicast Option

The IPv6 Multicast Option is used by the server to announce the IPv6 multicast
address, the transport layer protocol (ISO/OSI layer 4), and the port number the
multicast events and multicast notification events are sent to. As transport layer
protocol, only UDP is supported.

Type (=0x16)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0015)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

Reserved (=0x00) L4-Proto (UDP/…) Port Number

IPv6-Address [128bit]

Figure 11 – IPv6 Multicast Option format

[SWS_SD_00660]⌈
IPv6 Multicast Options shall be only referenced by SubscribeEventgroupAck entries,
describing the multicast destination IP address and port multicast events shall be

 Specification of Service Discovery
AUTOSAR CP R20-11

45 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

sent to.
⌋()

[SWS_SD_00397]⌈
The Length field [16 bits] of the IPv6 Multicast Option shall be set to 0x0015.
⌋()

Note: That is the size of this option not including the length and type fields.

[SWS_SD_00398]⌈
The Type field [8 bits] of the IPv6 Multicast Option shall be statically set to 0x16.
⌋()

[SWS_SD_00399]⌈
The Reserved field [8 bits] of the IPv6 Multicast Option (followed by the IPv6-Address
field) shall be statically set to 0x00.
⌋()

[SWS_SD_00404]⌈
The IPv6-Address field [128 bits] of the IPv6 Multicast shall be set to the Multicast IP
address of the Eventgroup.
⌋()

[SWS_SD_00413]⌈
The Reserved field [8 bits] of the IPv6 Multicast Option shall statically be set to 0x00.
⌋()

[SWS_SD_00414]⌈
The Layer 4 Protocol field [8 bits] (L4-Proto) of the IPv6 Multicast Option shall be set

0x11 (UDP).⌋()

[SWS_SD_00415]⌈
The Port Number field [16 bits] of the IPv6 Multicast Option shall carry the port
number for transporting Multicast Events of the Eventgroup.
⌋()
7.3.9.6 IPv4 SD Endpoint Option

The IPv4 SD Endpoint Option transports the endpoint (i.e. IP-Address and Port) of
the senders SD implementation. This is used to identify the SOME/IP-SD Instance in
cases in which the IP-Address and/or Port Number cannot be used.

Type (=0x24)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0009)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

IPv4-Address [32bit]

Reserved (=0x00) L4-Proto (UDP/…) Port Number

Figure 12 – IPv4 SD Endpoint Option

 Specification of Service Discovery
AUTOSAR CP R20-11

46 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00670]⌈
The IPv4 SD Endpoint Option shall be included in any SD Options Array up to one
time.
⌋()

[SWS_SD_00671]⌈
The IPv4 SD Endpoint Option shall only be included if the SOME/IP-SD message is
transported over IPv4.
⌋()

[SWS_SD_00672]⌈
The IPv4 SD Endpoint Option shall be the first option in the options array, if it exists.
⌋()

[SWS_SD_00673]⌈
If more than one IPv4 SD Endpoint Option is received, only the first shall be
processed and all further IPv4 SD Endpoint Options shall be ignored.
⌋()

[SWS_SD_00674]⌈
No SD Entry shall reference the IPv4 SD Endpoint Option.
⌋()

[SWS_SD_00675]⌈
If the IPv4 SD Endpoint Option is included in the SD message, the receiving SD
implementation shall use the content of this option instead of the Source IP Address
and Source Port Number.
⌋()

Note: This is important for answering the received SD message (e.g. Offer after Find
or Subscribe after Offer or Subscribe Ack after Subscribe) as well as the reboot
detection (channel based on SD Endpoint Option and not the addresses in the
message).

[SWS_SD_00676]⌈
The IPv4 SD Endpoint Option shall use the Type 0x24.

⌋()

[SWS_SD_00677]⌈
The IPv4 SD Endpoint Option shall specify the IPv4-Address, the transport layer
protocol (ISO/OSI layer 4) used, and a Port Number.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

47 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00678]⌈
The Format of the IPv4 SD Endpoint Option shall be as follows:

• Length [uint16]: Shall be set to 0x0009.

• Type [uint8]: Shall be set to 0x24.

• Reserved [uint8]: Shall be set to 0x00.

• IPv4-Address [uint32]: Shall transport the unicast IP-Address of SOME/IP-SD
as four Bytes.

• Reserved [uint8]: Shall be set to 0x00.

• Transport Protocol (L4-Proto) [uint8]: Shall be set to the transport layer
protocol of SOME/IP-SD (currently: 0x11 UDP).

• Transport Protocol Port Number (L4-Port) [uint16]: Shall be set to the transport
layer port of SOME/IP-SD.
⌋ ()

7.3.9.7 IPv6 SD Endpoint Option

The IPv6 SD Endpoint Option transports the endpoint (i.e. IP-Address and Port) of
the senders SD implementation. This is used to identify the SOME/IP-SD Instance in
cases in which the IP-Address and/or Port Number cannot be used.

Type (=0x26)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0015)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

Reserved (=0x00) L4-Proto (UDP/…) Port Number

IPv6-Address [128bit]

Figure 13 – IPv6 SD Endpoint Option

[SWS_SD_00679]⌈
The IPv6 SD Endpoint Option shall be included in any SD message up to one time.
⌋()

[SWS_SD_00680]⌈
The IPv6 SD Endpoint Option shall only be included if the SOME/IP-SD message is
transported over IPv6.

⌋()

[SWS_SD_00681]⌈
The IPv6 SD Endpoint Option shall be the first option in the options array, if existing.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

48 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00682]⌈
If more than one IPv6 SD Endpoint Option is received, only the first shall be
processed and all further IPv6 SD Endpoint Options shall be ignored.
⌋()

[SWS_SD_00683]⌈
No SD Entry shall reference the IPv6 SD Endpoint Option.
⌋()

[SWS_SD_00684]⌈
If the IPv6 SD Endpoint Option is included in the SD message, the receiving SD
implementation shall use the content of this option instead of the Source IP Address
and Source Port for answering this SD messages.
⌋()

This is important for answering the received SD messages (e.g. Offer after Find or
Subscribe after Offer or Subscribe Ack after Subscribe) as well as the reboot
detection (channel based on SD Endpoint Option and not the addresses in the
message).

[SWS_SD_00685]⌈
The IPv6 SD Endpoint Option shall use the Type 0x26.

⌋()

[SWS_SD_00686]⌈
The IPv6 SD Endpoint Option shall specify the IPv6-Address, the transport layer
protocol (ISO/OSI layer 4) used, and the Port Number.
⌋()

[SWS_SD_00687]⌈
The Format of the IPv6 SD Endpoint Option shall be as follows:

• Length [uint16]: Shall be set to 0x0015.

• Type [uint8]: Shall be set to 0x26.

• Reserved [uint8]: Shall be set to 0x00.

• IPv6-Address [uint128]: Shall transport the unicast IP-Address of SOME/IP-SD
as 16 Bytes.

• Reserved [uint8]: Shall be set to 0x00.

• Transport Protocol (L4-Proto) [uint8]: Shall be set to the transport layer
protocol of SOME/IP-SD (currently: 0x11 UDP).

• Transport Protocol Port Number (L4-Port) [uint16]: Shall be set to the transport
layer port of SOME/IP-SD.

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

49 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.3.9.8 Handling missing, redundant, and conflicting Options
This section describes the error handling of received options.

[SWS_SD_00661]⌈
If an entry references an unknown option, this option shall be ignored.

⌋()

[SWS_SD_00662]⌈
If an entry references an redundant option (option that is not needed by this specific
entry), this option shall be ignored.
⌋()

[SWS_SD_00663]⌈
If a SubscribeEventgroup entry references two or more options that are in conflict,
this entry shall be answered with a SubscribeEventgroupNack entry.

⌋()

[SWS_SD_00714]⌈
If an entry other than a SubscribeEventgroup entry references two or more options
that are in conflict, this entry shall be silently discarded.
⌋()

[SWS_SD_00710]⌈
If a received entry does not reference at least the configured options, this entry shall
be ignored or a SubscribeEventgroupNack (for SubscribeEventgroup entries) shall
be sent. Missing Multicast Endpoint Options shall be ignored by the client, if unicast
communication via UDP was set up (UDP Endpoint Option in Offer and Subscribe).
⌋()

Note:
For Service Endpoints Options see SdClientServiceTcpRef and
SdClientServiceUdpRef. For Eventgroup Endpoint Options see SdEventActivationRef
at SdEventHandlerUdp/SdEventHandlerTcp/SdEventHandlerMulticast.
See also SWS_SD_00662 and SWS_SD_00420.

[SWS_SD_00664]⌈
When two different Configuration Options are referenced by an entry, the
configuration sets shall be merged.
⌋()

[SWS_SD_00665]⌈
If the two Configuration Options have conflicting items (same name), all items shall
be handled. There shall be no attempt been made to merge duplicate items.

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

50 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.3.9.9 Security considerations for Options

[SWS_SD_00688]⌈

A SOME/IP-SD implementation shall always check that the IP Addresses received in
Endpoint options and SD Endpoint options are topological correct (reference IP
Addresses in the IP subnet for which SOME/IP-SD is used) and shall ignore IP
Addresses that are not topological correct as well as the entries referencing those
options.

⌋()

Note:
This means that only Clients and Servers in the same subset are accessible. An
example for checking the IP Addresses (Endpoint-IP) for topological correctness is:

SOME/IP-SD-IP-Address AND Netmask = Endpoint-IP AND Netmask.

[SWS_SD_00720]⌈
For checking whether endpoints are topological correct, the value of
ECUC_Sd_00128 shall be used in order to determine on how many leading bits shall
be compared when checking if an address is local. If not present, the value of the
locally configured netmask for the IP address shall be used.
⌋()

7.3.10 Entries referencing Options

This chapter describes how Entries can reference two runs of Options with zero to
fifteen options each in order to reference additional information.

Note: Entries support two option runs to allow referencing the same Options by
different Entries. With a single option run, sharing Endpoint Options while having
different Configuration Options per Entry would not have work efficiently.

[SWS_SD_00223]⌈
The first option run starts with the option referenced by the field Index 1st options and
references zero to fifteen options.
⌋()

[SWS_SD_00224]⌈
The number of options referenced by the first option run is determined by the field #
of opt 1.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

51 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00225]⌈
The second option run starts with the option referenced by the field Index 2nd options
and references zero to fifteen options.
⌋()

[SWS_SD_00226]⌈
The number of options referenced by the second option run is determined by the field
of opt 2.
⌋()

Note to SWS_SD_00226: Figure 14 shows an SD message example, which has an
entry referencing two options in the first run:

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Flags [8 bit] = 0x80 Reserved [8 bit =0x00]

Length of Entries Array in Bytes [32 bit]

=0x0000 0010

Length of Options Array in Bytes

= 0x0000 0028

Type

=0x01 (Offer)

Index 1st options

 =0

Index 2nd options

=0

of opt 1

=2

of opt 2

=0 (none)

Service ID

=0xFFFE

Instance ID

=0x0001

Major Version

=0x01

TTL

=300 (offer is valid for 300 seconds)

Minor Version

=0x00000032

Type

=0x04 (IPv4 Endpoint)

Reserved

=0x00

Length

=0x0009

IPv4-Address = 192.168.0.1

Reserved

=0x00

L4-Proto

=0x11 (UDP)

Port Number

=0xD903 (=55555)

[0x16]otherserv=internaldiag[0]

Type

=0x01 (Config)

Reserved

=0x00

Length

=0x0019

Figure 14 – Example with Entries referencing Options

[SWS_SD_00477]⌈
The following table shows which Option is allowed to be carried by different Entries
(all other combinations shall not be used):

 Specification of Service Discovery
AUTOSAR CP R20-11

52 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Endpoint Options
(IPv4 and IPv6)

Multicast Options
(IPv4 and IPv6)

Configuration Option

FindService

Allowed

OfferService Allowed

Allowed

StopOfferService Allowed

Allowed

SubscribeEventgroup Allowed

Allowed

StopSubscribeEventgroup Allowed

Allowed

SubscribeEventgroupAck Allowed Allowed

SubscribeEventgroupNack Allowed

Table 1 – Allowed Options per Entry

⌋()

Note: Usage of these Options depends on other factors that are not shown in this
table. Consult the appropriate requirements in this document.

7.4 Service Discovery Entry Types

ECUs shall distribute available Service Instances and Service Instances needed as
well as the Eventgroups of these Service Instances. For this purpose, they exchange
entries using Service Discovery messages. This chapter describes how these entries
are encoded to offer and find services as well as find and subscribe Eventgroups.

The following overview table shows to which value the Type field and the TTL field
have to be set:

TTL>0 TTL=0

Type 0x00 0x04 0x00 0x04

0x00 FindService
 0x01 OfferService

StopOfferService
 0x02

SubscribeEventgroup

StopSubscribeEventgroup

0x03

SubscribeEventgroupAck

SubscribeEventgroupNack

Table 2 – Overview of currently supported Entry Types

7.4.1 Entries for Services (common requirements)

These requirements are valid for all Entries concerning Services including Entries of
Type 0x00, 0x01, 0x02, and 0x03.

Note: Currently only Service Entries of type 0x00 and 0x01 are defined in this
specification.

[SWS_SD_00294]⌈
All entries concerning Services (FindService, OfferService, StopOfferService) shall
be of Entry Format Type 1.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

53 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00295]⌈
An Instance ID of 0xFFFF shall mean any possible instances and are not allowed for
OfferService and StopOfferService entries.
⌋()

[SWS_SD_00296]⌈
FindService entries shall carry Service ID, Service Instance ID, Major Version, and

Minor Version as configured in SdClientServiceID,
SdClientServiceInstanceID, SdClientServiceMajorVersion, and

SdClientServiceMinorVersion.
⌋()

[SWS_SD_00297]⌈
OfferService and StopOfferService shall carry Service ID, Service Instance ID, Major

Version, Minor Version, and as configured in SdServerServiceID,
SdServerServiceInstanceID, SdServerServiceMajorVersion, and

SdServerServiceMinorVersion.
⌋()

[SWS_SD_00298]⌈
FindService entries shall carry the TTL as configured in SdClientTimerTTL.
⌋()

[SWS_SD_00299]⌈
OfferService entries shall carry the TTL as configured in SdServerTimerTTL.
⌋()

[SWS_SD_00253]⌈
A StopOfferService (type 0x01) entry shall set the TTL field to 0x000000.
⌋()

[SWS_SD_00267]⌈
All entries concerning Services (FindService, OfferService and StopOfferService
shall carry – i.e. reference – the options as configured.
⌋()

Note: see also chapter 7.3.9.6.

[SWS_SD_00281]⌈
A StopOfferService (type 0x01), shall carry – i.e. reference – the same options as the
entries trying to stop.

⌋()

7.4.2 FindService entry

FindService entries allow finding Service Instances.

 Specification of Service Discovery
AUTOSAR CP R20-11

54 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00240]⌈
A FindService entry has the type field set to 0x00.
⌋()

[SWS_SD_00444]⌈
Service ID shall be set to the Service ID of the service that shall be found.
⌋()

[SWS_SD_00501]⌈
Instance ID shall be set to 0xFFFF, if all Service Instances shall be returned. It shall
be set to the Instance ID of a specific Service Instance, if just a single Service
Instance shall be returned.
⌋()

Note: This means that when receiving Instance ID 0xFFFF for all appropriate Service
Instances must be answered as if separate Find Entries were received.

Example:
ECU1 offers Service 0x1234 with Instance 0xabcd. This instance is in Main Phase.
ECU2 send out find with Service ID 0x1234 and Instance ID 0xFFFF.
ECU1 shall answer with Offer (Service ID 0x1234, Instance ID 0xabcd).

[SWS_SD_00502]⌈
Major Version shall be set to 0xFF, that means that services with any version shall be
returned. If set to value different than 0xFF, services with this specific major version
shall be returned only.
⌋()

Note: It is expected that the Major Version on client side is configured to a specific
value in normal operation since the client should look for an specific interface
version. Different Major Versions are not compatible to each other.

[SWS_SD_00503]⌈
If SdVersionDrivenFindBehavior is set to EXACT_OR_MINOR_VERSION then
minor Version shall be set to 0xFFFF FFFF, that means that services with any
version shall be returned. If set to a value different to 0xFFFF FFFF, services with
this specific minor version shall be returned only.
⌋()

Note: It is expected that the Minor Version on client side is configured to 0xFFFF
FFFF in normal operation since the client should accept all different Minor Versions.
Different Minor Versions shall be compatible to each other.

[SWS_SD_10503]{DRAFT}⌈
If SdVersionDrivenFindBehavior is set to MINIMUM_MINOR_VERSION the
following points shall be considered by the Service Discovery module:

 the Minor Version shall be set to the minimum acceptable required minor
version in the configuration

 Specification of Service Discovery
AUTOSAR CP R20-11

55 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

 Service Discovery shall use 0xFFFF FFFF (ANY) for the FindService entry,
which means that services with any minor version shall will be returned

⌋()

Note: Handling of received services entries, where the
SdVersionDrivenFindBehavior is set to MINIMUM_MINOR_VERSION is
specified in requirement SWS_SD_04089 of chapter 7.5.3 Receiving Entries

[SWS_SD_00504]⌈
TTL shall be set according to the configuration.
⌋()

[SWS_SD_00506]⌈
TTL shall not be set to 0x000000 since this is considered to be the Stop entry for this
entry.
⌋()

[SWS_SD_00652]⌈
If TTL is set to 0xFFFFFF, the Find Service entry entry shall be considered valid until
shutdown (i.e. next reboot).
 ⌋()

[SWS_SD_00505]⌈
FindServer entries shall never reference Endpoint or Multicast Options. They shall
reference configuration options, if configured to do so.
⌋()

7.4.3 OfferService entry

To offer Service Instances, the OfferService entry shall be used.

[SWS_SD_00254]⌈
An OfferService entry shall set the type to 0x01.
⌋()

[SWS_SD_00509]⌈
Service ID shall be set to the Service ID of the Service Instance offered.
⌋()

[SWS_SD_00510]⌈
Instance ID shall be set to the Instance ID of the Service Instance offered.
⌋()

[SWS_SD_00511]⌈
Major Version shall be set to the Major Version of the Service Instance offered (see

SdServerServiceMajorVersion).
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

56 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Note: Since SdServerServiceMajorVersion can be only a value up to 0xFE, the

value 0xFF (any) cannot occur in an OfferService entry.

[SWS_SD_00512]⌈
Minor Version shall be set to the Minor Version of the Service Instance offered.
⌋()

[SWS_SD_00513]⌈
TTL shall be set to the lifetime of the Service Instance. After this lifetime the Service
Instance shall considered not been offered.
⌋()

[SWS_SD_00514]⌈
If TTL is set to 0xFFFFFF, the OfferService entry shall be considered valid until the
next reboot.
⌋()

[SWS_SD_00515]⌈
TTL shall be set to another value than 0x000000 since 0x000000 is considered to be
the Stop entry for this entry.
⌋()

[SWS_SD_00416]⌈
OfferService entries shall always reference at least an IPv4 or IPv6 Endpoint Option
to signal how the service is reachable.
⌋()

[SWS_SD_00417]⌈
For each L4 protocol needed for the service (i.e. UDP and/or TCP) an IPv4 Endpoint
option shall be added if IPv4 is supported.
⌋()

[SWS_SD_00418]⌈
For each L4 protocol needed for the service (i.e. UDP and/or TCP) an IPv6 Endpoint
option shall be added if IPv6 is supported.
⌋()

[SWS_SD_00419]⌈
The IP addresses and port numbers of the Endpoint Options shall also be used for
transporting events and notification events.
⌋()

[SWS_SD_00420]⌈
In the case of UDP this information is used for the source address and the source
port of the events and notification events.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

57 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00421]⌈
In the case of TCP this is the IP address and port the client needs to open a TCP
connection to in order to receive events using TCP.
⌋()

[SWS_SD_00612]⌈
If the Load Balancing Option is used, the Weight field shall be set to the configured
value of SdServerServiceLoadBalancingWeight.
⌋()

[SWS_SD_00611]⌈
If the Load Balancing Option is used, the Priority field shall be set to the configured
value of SdServerServiceLoadBalancingPriority.
⌋()

7.4.4 Building OfferService entries

[SWS_SD_00478]⌈
This chapter describes how to derive all necessary data to assemble an OfferService
Message:

1) Derive all static data from the configuration container. These are e.g:
o Container SdServerService: SdServerServiceId
o Container SdServerService: SdServerServiceInstanceId
o Container SdServerService: SdServerServiceMajorVersion
o Container SdServerService: SdServerServiceMinorVersion
o Container SdServerTimer: SdServerTimerTTL
o Container SdInstance: SdInstanceHostname

2) If TCP is configured for this service (configuration item

SdServerServiceTcpRef exists):

a. The generator derives a SoConID out of the SoConGroup referenced

by the configuration parameter SdServerServiceTcpRef

b. Call the Socket Adaptor’s API SoAd_GetLocalAddr() with the derived
SoConID to get back the IP Address, Transport protocol (Layer 4), and
the port number needed for the Endpoint Option.

c. Build the relevant Endpoint Option with L4-Protocol set to TCP (shall be
same as in LocalAddr) .

3) If UDP is configured for this service (configuration item

SdServerServiceUdpRef exists):

a. The generator derives a SoConID out of the SoConGroup referenced

by the configuration parameter SdServerServiceUdpRef

 Specification of Service Discovery
AUTOSAR CP R20-11

58 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

b. Call the Socket Adaptor’s API SoAd_GetLocalAddr() with the derived
SoConID to get back the IP Address, Transport protocol (Layer 4), and
the port number needed for the Endpoint Option.

c. Build the relevant Endpoint Option with L4-Protocol set to TCP (shall be
same as in LocalAddr) .

4) Build Configuration Option if configured (see configuration item

SdServerCapabilityRecord and SdInstanceHostname).

5) Build OfferService Entry as described above.

⌋()

7.4.5 StopOfferService entry

To stop offering Service Instances, the StopOfferService entry shall be used.

[SWS_SD_00422]⌈
The StopOfferService entry type shall be used to stop offering Service Instances.
⌋()

[SWS_SD_00423]⌈
A StopOfferService entry shall set the type to 0x01.
⌋()

[SWS_SD_00424]⌈
StopOfferService entries shall set the entry fields exactly like the OfferService entry
they are stopping, except TTL.
⌋()

[SWS_SD_00425]⌈
TTL shall be set to 0x000000.
⌋()

7.4.6 Eventgroup Entries (Common requirements)

The following requirements are valid for all Entries concerning Eventgroups including
Entries of Type 0x04, 0x05, 0x06, and 0x07.

Note: Currently only Eventgroup Entry of Type 0x06 and 0x07 are defined in this
specification.

[SWS_SD_00289]⌈
Eventgroups entries include:

 SubscribeEventgroup and StopSubscribeEventgroup

 Specification of Service Discovery
AUTOSAR CP R20-11

59 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

 SubscribeEventgroupAck and SubscribeEventgroupNack

⌋()

[SWS_SD_00290]⌈
All Eventgroup entries shall use the Entry Format Type 2.
⌋()

[SWS_SD_00291]⌈
Eventgroup entries shall set the Eventgroup ID to the ID of the Eventgroup

(configuration parameters SdConsumedEventGroupId and

SdEventHandlerEventGroupId).
⌋()

Please note, that the Eventgroup ID 0x0000 is reserved.

[SWS_SD_00300]⌈
Eventgroup entries shall set the Reserved fields to 0x00 and 0x000.
⌋()

[SWS_SD_00301]⌈
SubscribeEventgroup, and StopSubscribeEventgroup entries shall set the Service
IDs, Service Instance IDs, and Eventgroup IDs based on the configuration

(configuration parameters SdClientServiceId and
SdClientServiceInstanceId).
⌋()

[SWS_SD_00303]⌈
The Service Instance ID shall not be set to 0xFFFF for any “Instance”.
⌋()

[SWS_SD_00304]⌈
SubscribeEventgroup entries shall have the TTL field set to the configured value

(configuration parameter SdClientTimerTTL of SdConsumedEventGroup) and

the SubscribeEventgroupAck entry shall use the TTL value of the
SubscribeEventgroup entry it acknowledges.
⌋()

[SWS_SD_00306]⌈
A StopSubscribeEventgroup (type 0x06), and SubscribeEventgroupNack (type 0x07)
entry shall set the TTL field to 0x000000.
⌋()

[SWS_SD_00307]⌈
Eventgroup entries shall carry the options as configured.
⌋()

7.4.7 SubscribeEventgroup entry

To subscribe to Eventgroups, the SubscribeEventgroup entry shall be used.

 Specification of Service Discovery
AUTOSAR CP R20-11

60 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00312]⌈
A SubscribeEventgroup entry shall set the type to 0x06.
⌋()

[SWS_SD_00693]⌈
The Counter field in the Type 2 Entry format is used to differentiate different
Subscribe Eventgroups to otherwise identical Eventgroups (i.e. same Service ID,
same Instance ID, same Eventgroup ID, and same Major Version). The Counter field
shall be reflected by the Server to the Subscribe Eventgroup Ack and Nack entries.

If identical Consumed Eventgroups are configured with different Endpoints, then the
SD shall use the Counter to differentiate the different Subscriptions. The value of the
Counter can be determined by the implementation.
⌋()

Note:
A width of 4 bits limits this to 16 different Subscriptions to the same Eventgroup.

7.4.8 StopSubscribeEventgroup entry

To stop subscribing to an Eventgroup, the StopSubscribeEventgroup entry shall be
used.

[SWS_SD_00313]⌈
A StopSubscribeEventgroup entry shall set the type to 0x06.
⌋()

[SWS_SD_00427]⌈
StopSubscribeEventgroup entries shall set the entry fields exactly like the
SubscribeEventgroup entry they are stopping, except the TTL field.
⌋()

[SWS_SD_00694]⌈
A Stop Subscribe Eventgroup Entry shall reference the same options the Subscribe
Eventgroup Entry referenced. This includes but is not limited to Endpoint and
Configuration options.
⌋()

[SWS_SD_00426]⌈
The TTL shall be set to 0x000000.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

61 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.4.9 SubscribeEventgroupAck entry

To acknowledge a SubscribeEventgroup entry, the SubscribeEventgroupAck entry
shall be used and shall be used with the values as in the SubscribeEventgroup entry
it stops.

[SWS_SD_00314]⌈
A SubscribeEventgroupAck entry shall set the type to 0x07.
⌋()

[SWS_SD_00428]⌈
Service ID, Instance ID, Major Version, Eventgroup ID, TTL, Counter, and Reserved
shall be the same value as in the Subscribe that is being answered.
⌋()

[SWS_SD_00315]⌈
A SubscribeEventgroupAck entry shall set the TTL field to the value of the
SubscribeEventgroup entry, it acknowledges.
⌋()

[SWS_SD_00429]⌈
SubscribeEventgroupAck entries referencing events and notification events that are
transported via multicast shall reference an IPv4 Multicast Option and/or and IPv6
Multicast Option. The Multicast Options state to which Multicast address and port the
events and notification events will be sent to.
⌋()

7.4.10 SubscribeEventgroupNack entry

[SWS_SD_00430]⌈
The SubscribeEventgroupNegativeAcknowledgment entry type shall be used to
indicate that a valid SubscribeEventgroup (see SWS_SD_00476) entry was NOT
accepted. It shall be always sent instead of a SubscribeEventgroupAck if such an
error occurred. Reasons for sending a
SubscribeEventgroupNegativeAcknowledgment include:

• Combination of Service ID, Instance ID, Eventgroup ID, and Major Version is
 unknown

• Required TCP-connection was not opened by client

• Problems with the references options occurred (wrong values, missing
 endpoint, or conflicting endpoints)

• Resource problems at the Server

⌋()

[SWS_SD_00698]⌈
If a SubscribeEventgroup entry referencing two conflicting Endpoint Options (UDP or

 Specification of Service Discovery
AUTOSAR CP R20-11

62 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

TCP) is received then a SubscribeEventgroupNack shall be generated. Endpoint
options are considered conflicting if they are of the same type but hold different
values, like different IP or Port number.
⌋()

[SWS_SD_00431]⌈
If a SubscribeEventgroupNegativeAcknowledgment is sent (see SWS_SD_00430),
the Service ID, Instance ID, Major Version, Eventgroup ID, Counter, and Reserved
shall be the same value as in the subscribe that is being answered.
⌋()

[SWS_SD_00316]⌈
A SubscribeEventgroupNack entry shall set the type to 0x07.
⌋()

[SWS_SD_00432]⌈
The TTL shall be set to 0x000000.
⌋()

7.4.11 Building SubscribeEventgroup entries

[SWS_SD_00701]⌈
This requirement describes how to derive all necessary data to assemble a
SubscribeEventgroup Message:

1) Derive all static data from the configuration container. These are e.g:
o Container SdClientService: SdClientServiceId
o Container SdClientService: SdClientServiceInstanceId
o Container SdClientService: SdClientServiceMajorVersion
o Container SdClientService: SdClientServiceMinorVersion
o Container SdConsumedEventGroupTimerRef - SdClientTimer:

 SdClientTimerTTL
o Container SdInstance: SdInstanceHostname

2) If TCP is configured for this service (configuration item

SdClientServiceTcpRef exists):

a. Find the relevant SocketConnection based on the

SdClientServiceTcpRef (finding SoConGroup) and the Endpoint

Option of the OfferService entry (finding SoCon within).

b. Call the Socket Adaptor’s API SoAd_GetLocalAddr() with the

derived SoConID to get back the IP Address, Transport protocol (Layer
4), and the port number needed for the Endpoint Option.

c. Build the relevant Endpoint Option with L4-Protocol set to TCP (shall be
same as in LocalAddr).

3) If UDP is configured for this service (configuration item

SdClientServiceUdpRef exists):

 Specification of Service Discovery
AUTOSAR CP R20-11

63 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

a. Find the relevant SocketConnection based on the

SdClientServiceUdpRef (finding SoConGroup) and the Endpoint

Option of the OfferService entry (finding SoCon within).

b. Call the Socket Adaptor’s API SoAd_GetLocalAddr() with the

derived SoConID to get back the IP Address, Transport protocol (Layer
4), and the port number needed for the Endpoint Option.

c. Build the relevant Endpoint Option with L4-Protocol set to UDP (shall be
same as in LocalAddr).

4) Build Configuration Option if configured (see configuration item

SdClientCapabilityRecord and SdInstanceHostname).

5) Build SubscribeEventgroup Entry as described above.

⌋()

7.5 Sending and Receiving of Messages

This chapter describes how messages are transmitted and received using the Socket
Adaptor module.

[SWS_SD_00039]⌈
The Service Discovery module sends Service Discovery messages (Offer, StopOffer,

Find,..) using the SoAd_IfTransmit() API carrying the referenced TxPdu (see

configuration parameter SdInstanceTxPdu).
⌋()

[SWS_SD_00040]⌈
The Service Discovery module receives Service Discovery messages via the API

Sd_SoAdIfRxIndication() and the configuration items

SdInstanceUnicastRxPdu and SdInstanceMulticastRxPdu. The remote

address must be saved in the call context of the Sd_RxIndication.
⌋()

[SWS_SD_00479]⌈
When receiving Service Discovery messages the values of all reserved fields shall be
ignored.
⌋()

[SWS_SD_00708]⌈
Every time the Service Discovery module receives a SOME/IP-SD message, the
consistency of this message has to be checked. This includes but is not limited to:

 Validating that the SOME/IP-SD message is long enough to fit the entries and
options arrays (total length = 12 + length of entries array + length of options
array).

 Check that entries reference existing options.
In case a malformed message has been received, the extended production error

SD_E_MALFORMED_MSG shall be reported.

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

64 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.5.1 Sequence for message transmission

[SWS_SD_00480]⌈
This chapter describes the interaction with the Socket Adaptor module to send
Service Discovery messages:

1) Precondition: Service Discovery message is assembled

2) In case the message shall be sent via unicast:
- Call the Socket Adaptor’s API SoAd_SetRemoteAddr

3) In case the message shall be sent via multicast:
- Call the API SoAd_SetRemoteAddr to set the destination

4) Call SoAd_IfTransmit() to send the message on the bus

Please also refer to the sequence “CLIENT/SERVER: TransmitSdMessage” shown
in Chapter 9.

⌋()

Note:
This can be achieved for example by checking the status of all Service Instances and
Eventgroups cyclically and afterwards assembling the Service Discovery Messages.

[SWS_SD_00650]⌈
Entries received with the unicast flag set to 0, shall not be answered with unicast but

ignored⌋()

[SWS_SD_00651]⌈
The amount of separate Service Discovery messages shall be reduced, i.e.:
Combine as much information as possible into one Service Discovery message
before calling the Socket Adaptor’s transmit API. This means that when a entry is
sent after waiting the appropriate delay (i.e. based on Request-Response-Delay) all
other entries for this communication partner may be packed into the Service
Discovery message as well.⌋()

7.5.2 Sequence for message reception

[SWS_SD_00482]⌈
This chapter describes the interaction with the Socket Adaptor on how Service
Discovery messages are received:

1) When the SocketAdaptor receives a Service Discovery message, the API
Sd_RxIndication() is called.

2) Using the indicated RxPduId, the associated SoConId for this SD Instance has
to be determined.

 Specification of Service Discovery
AUTOSAR CP R20-11

65 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

3) Call API SoAd_GetRemoteAddr() with this SoConId.

4) Store address and message for further processing.

5) Reset the SoCon back to Wildcard using SoAd_ReleaseRemoteAddr()

6) The entries shall be processed exactly in the order they arrived.

Please also refer to the sequence “CLIENT/SERVER: Sd_RxIndication” shown in
Chapter 9.

⌋()

Note:
For deriving the SoConId, the SoAdSocketRoute corresponding to this RxPduId
should refer either to a SoAdSocketConnection or to a SoAdSocketConnectionGroup
containing a single SoAdSocketConnection.

[SWS_SD_00696]⌈
If the entries of a single Service Discovery Message would lead to closing and
opening the same Socket Connection in the Socket Adaptor, the Service Discovery
shall not close the Socket Connection first.

⌋()

Note: Closing and opening Socket Connections (especially with TCP), conflicts with
the behavior of the Service Discovery and leads to suboptimal reaction times.

[SWS_SD_00483]⌈
When receiving Service Discovery messages, the receiver shall ignore Entries of
unknown type.
⌋()

[SWS_SD_00484]⌈
When receiving Service Discovery messages, the receiver shall ignore Options of
unknown type.
⌋()

[SWS_SD_00485]⌈
When receiving Service Discovery messages, the receiver shall ignore the values of
reserved fields.
⌋()

7.5.3 Receiving Entries

When receiving entries the relevant Service Instance or Eventgroups have to be
identified, which is explained in this section.

[SWS_SD_00486]⌈
When receiving a FindService Entry Service ID, Instance ID, Major Version, and
Minor Version must match exactly to the configured values to identify a Service

 Specification of Service Discovery
AUTOSAR CP R20-11

66 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Instances and its associated Eventgroups, except if “any values” are in the Entry (i.e.
0xFFFF for Service ID, 0xFFFF for Instance ID, 0xFF for Major Version, and
0xFFFFFFFF for Minor Version.)

See configuration parameters SdServerServiceServiceId,
SdServerServiceInstanceId, SdServerServiceMajorVersion, and

SdServerServiceMinorVersion.
⌋()

Note:
When receiving a FindService with Service ID 0x0001, Instance ID 0xFFFF, Major
Version 0x02, and Minor Version 0xFFFFFF, only the Service ID and the Major
Version shall be used to match the local Service Instances and its associated
Eventgroups fitting to this FindService.

[SWS_SD_00487]⌈
When receiving an OfferService or StopOfferService the Service ID, Instance ID,
Major Version must match exactly to the configured values to identify a Service
Instances and its associated Eventgroups.

See configuration parameters SdClientServiceServiceId,

SdClientServiceInstanceId, and SdClientServiceMajorVersion.
⌋()

[SWS_SD_00488]⌈
If SdClientServiceMinorVersion is set to 0xFFFFFF and

SdVersionDrivenFindBehavior is set to EXACT_OR_ANY_MINOR_VERSION, the

Minor Version in a received OfferService or StopOfferService entry is not checked for
identifying Service Instances and its associated Eventgroups.
⌋()

[SWS_SD_00489]⌈
If SdClientServiceMinorVersion is set to any value except 0xFFFFFF and

SdVersionDrivenFindBehavior is set to EXACT_OR_ANY_MINOR_VERSION, the
Minor Version in a received OfferService or StopOfferService shall be checked for
identifying Service Instances and its associated Eventgroups. The Service Discovery
module shall process a OfferService or StopOfferService where the minor version of
the received entry match exact the configured minor version of the corresponding
SdClientService.
⌋()

[SWS_SD_00490]⌈
When receiving Eventgroup entries (i.e.SubscribeEventgroup,
StopSubscribeEventgroup, SubscribeEventgroupAck, and
SubscribeEventgroupNack) the Service ID, Instance ID, Eventgroup ID, and Major
Version shall be exactly matched to identify the Eventgroup.
⌋()

Note:

 Specification of Service Discovery
AUTOSAR CP R20-11

67 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

We call each configured service instance fulfilling the SWS items [SWS_SD_00486] -
[SWS_SD_00489] a service instance match candidate.

[SWS_SD_04089]{DRAFT}⌈
If SdVersionDrivenFindBehavior is set to MINIMUM_MINOR_VERSION, the
Minor
Version in a received OfferService or StopOfferService shall be checked for
identifying Service Instances and its associated Eventgroups. The Service Discovery
module shall process a OfferServices or StopOfferServices where the minor version
of the received entry are equal or greater than the configured minor version of the
corresponding SdClientService. ⌋()

[SWS_SD_07016]{DRAFT}⌈
If a service match candidate is detected for a ClientService where
SdVersionDrivenFindBehavior is set to MINIMUM_MINOR_VERSION and the
ClientService has already triggered a subsription to another ServerService, the
Service Discovery module shall silently discard this service match candidate.
⌋()

[SWS_SD_01503]⌈
The Service Discovery module shall ignore all received service entries of a Client
Service, where the minor version of the received entry is specified within a version
blacklist of the corresponding SdClientService (see SdBlacklistedVersions). ⌋()

[SWS_SD_00716]⌈
If either the received Type 1 SD entry references a configuration option or a service
match candidate has capability records configured (i.e., SdServerCapabilityRecord in
case of a received FindService entry or SdClientCapabilityRecord in case of a
OfferService or a StopOfferService entry), the configured
SdCapabilityRecordMatchCallout shall be invoked by the SD implementation.
⌋()

[SWS_SD_00717]⌈
A received Type 2 SD entry with Service ID 0xFFFE shall be matched accordingly to
SWS_SD_00716 with the capability records of the Service
(SdServerCapabilityRecord in case of a received SubscribeEventgroup or
StopSubscribeEventgroup entry or SdClientCapabilityRecord in case of
SubscribeEventgroupAck or SubscribeEventgroupNack entry).

⌋()

[SWS_SD_00718]⌈
If the invoked SdCapabilityRecordMatchCallout returns true, the respective service
instance match candidate actually provides a match for the received SD message
including the configured capability records.
⌋()

[SWS_SD_00719]⌈
If the invoked SdCapabilityRecordMatchCallout returns false, the respective service
instance match candidate actually does not provide a match for the received SD
message due to the mismatch with respect to the configured capability records.

 Specification of Service Discovery
AUTOSAR CP R20-11

68 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

⌋()

7.5.3.1 Receiving Entries using Multicast
When receiving Service Discovery messages using multicast, these messages may
be received by multiple ECUs at once and multiple ECUs may answer to such a
message in parallel. This could lead to overload situations of the ECU that sent the
first message. In order to cope with this problem the Service Discovery shall allow
delaying answers to multicast as described in this section.

[SWS_SD_00491]⌈
Answers to Entries received using multicast shall be delayed based on the
appropriate configuration items:

- For ServerServices:
o SdServerTimerRequestResponseMinDelay
o SdServerTimerRequestResponseMaxDelay

- For ConsumedEventgroups:
o SdClientTimerRequestResponseMinDelay
o SdClientTimerRequestResponseMaxDelay

⌋()

[SWS_SD_00492]⌈
The configuration parameters for delaying OfferService entries as response to
FindService entries received by multicast shall be taken from the Timer containers
referenced by the Service container:

- SdServerService

⌋()

[SWS_SD_00493]⌈
The configuration parameters for delaying SubscribeEventgroup entries as response
to OfferService entries received by multicast shall be taken from the Timer containers
referenced by the Eventgroup containers:

- SdConsumedEventGroup

⌋()

[SWS_SD_00494]⌈
There shall be a random delay between the appropriate MinDelay and MaxDelay
before answering to an Entry received via multicast.
⌋()

[SWS_SD_00724]⌈
If SdServerTimerRequestResponseMinDelay and

SdServerTimerRequestResponseMaxDelay are set to the same value, this

value shall be used as delay.

If SdServerTimerRequestResponseMinDelay and

SdServerTimerRequestResponseMaxDelay are set to 0, no delay shall be

introduced.
⌋()

[SWS_SD_00725]⌈

 Specification of Service Discovery
AUTOSAR CP R20-11

69 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

If SdClientTimerRequestResponseMinDelay and

SdClientTimerRequestResponseMaxDelay are set to the same value, this

value shall be used as delay.

If SdClientTimerRequestResponseMinDelay and

SdClientTimerRequestResponseMaxDelay are set to 0, no delay shall be

introduced.
⌋()

[SWS_SD_00495]⌈
Delayed answering Entries received via multicast (as in SWS_SD_00494) shall no
influence other timers (e.g. for handling the Repetition Phase).
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

70 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.6 Timings and repetitions for Server Service and Event Handlers

Especially after starting multiple ECUs, the multicast messages of the Service
Discovery come with the risk of overflowing ECUs with too many messages.
Therefore, the Service Discovery can be configured with a suitable message sending
behavior.

For every Server Service Instance different phases are defined as shown in Figure
15:

 Down

 Available

o Initial Wait Phase

o Repetition Phase

o Main Phase

Server UP

Initial Wait Phase Repetition Phase

tx

Main Phase

„Find“ received

tx tx tx tx tx

„Find“ received„Find“ received

DOWN

rx

Figure 15 – Communication phases Server

[SWS_SD_00605] ⌈
When the Down Phase is entered (coming from states other than init), the API
SoAd_CloseSoCon() shall be called for all Socket Connections associated with
this Server Service Instance.
⌋()

7.6.1 Initial Wait Phase for Server Services

This chapter describes the behavior of the Service Discovery in regard of a Server
Service Instance in the Initial Wait Phase.

[SWS_SD_00317]⌈
If the following conditions apply, the Initial Wait Phase for this configured Server
Service Instance shall be entered:

 Sd_Init() has been called

 SdServerService state was set to SD_SERVER_SERVICE_AVAILABLE (via
Sd_ServerServiceSetState() or Sd_ServiceGroupStart())

 Specification of Service Discovery
AUTOSAR CP R20-11

71 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

 Sd_LocalIpAddrAssignmentChg() with state
“TCPIP_IPADDR_STATE_ASSIGNED” has been called for the first IpAddrId
associated with the SdInstanceTxPdu.

⌋()

Note: Service Discovery expects that the IP address of the data/control path to be
always the same. This means that a call of Sd_LocalIpAddrAssignmentChg()
affects the control path and data path simultaneously.

[SWS_SD_00330]⌈
When the Initial Wait Phase is entered, the routing of the Server Service shall be
enabled. See SdServerServiceActivationRef of this Server Service Instance.
⌋()

[SWS_SD_00318]⌈
When entering the Initial Wait Phase, a random timer shall be started, using a
random value within the configured range of

SdServerTimerInitialOfferDelayMin and

SdServerTimerInitialOfferDelayMax.

⌋()

[SWS_SD_00319]⌈
If a FindService Entry is received within the Initial Wait Phase for this Server Service
Instance, it shall be ignored.
⌋()

[SWS_SD_00320]⌈
If a SubscribeEventgroup Entry or StopSubscribeEventgroup Entry are received
within the Initial Wait Phase (or other phases) for an Event Handler of this Server
Service Instance, it shall only be processed within the Service Discovery. Please
refer to the according sequence diagrams and section 7.6.4.
⌋()

[SWS_SD_00321]⌈
When the calculated random timer based on the min and max values

SdServerTimerInitialOfferDelayMin and

SdServerTimerInitialOfferDelayMax expires, the first OfferService entry

shall be sent out.
⌋()

[SWS_SD_00434]⌈
When the calculated random timer expires and the parameter

SdServerTimerInitialOfferRepetitionsMax does not equals ‘0’, the

Repetition Phase shall be entered.
⌋()

[SWS_SD_00435]⌈
When the calculated random timer expires and the parameter

SdServerTimerInitialOfferRepetitionsMax equal ‘0’, the Main Phase shall

 Specification of Service Discovery
AUTOSAR CP R20-11

72 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

be entered.
⌋()

[SWS_SD_00323]⌈
If SdServerService is set to a state other than SD_SERVER_SERVICE_AVAILABLE (

via Sd_ServerServiceSetState() or Sd_ServiceGroupStop()) while being

in Initial Wait Phase:

 Enter the Down Phase.

 Set all associated EventHandler to SD_EVENT_HANDLER_RELEASED and
report it to the BswM by calling the API
BswM_Sd_EventHandlerCurrentState.

 Cancle all relevant timers for service instance (see SWS_SD_00318).

⌋()

[SWS_SD_00325]⌈
If Sd_LocalIpAddrAssignmentChg() is called with a state other than
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Initial Wait Phase, this phase
shall be left and the Down Phase shall be entered.
⌋()

[SWS_SD_00606]⌈
When the Initial Wait Phase is entered, the API SoAd_OpenSoCon() shall be called

for all Socket Connections associated with this Server Service Instance.

⌋()

Note: As soon as an IP address is assigned again and no
SD_SERVER_SERVICE_DOWN was received, the Initial Wait Phase shall be
reentered with the random timer reset to the random value.

7.6.2 Repetition Phase for Server Services

This chapter describes the timing behavior of the Service Discovery in regard of
Server Service Instances in the Repetition Phase.

[SWS_SD_00329]⌈
If the Repetition Phase is entered, the Service Discovery shall wait

SdServerTimerInitialOfferRepetitionBaseDelay and send an

OfferService Entry.
⌋()

[SWS_SD_00336]⌈
After the amount of cyclically sent OfferServices within the Repetition Phase equals
the amount of SdServerTimerInitialOfferRepetitionsMax, the Main Phase
shall be entered.
⌋()

Note:

 Specification of Service Discovery
AUTOSAR CP R20-11

73 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Additionally sent OfferService messages which have been triggered by received
FindService messages shall have no influence on the counter value of the cyclically
OfferService messages.

[SWS_SD_00331]⌈
In the Repetition Phase up to SdServerTimerInitialOfferRepetitionsMax

OfferService Entries shall be sent with doubling intervals (BaseDelay, first
OfferService Entries, 2x BaseDelay, second OfferService Entries, 4x BaseDelay,
third OfferService Entries).
⌋()

Note: Example config and resulting behavior:

SdServerTimerInitialOfferRepetitionBaseDelay=30

SdServerTimerInitialOfferRepetitionsMax=3

[Initial Wait Phase starts]
Wait Initial Wait Delay based on Configured Min and Max
Send entry.
[Initial Wait Phase ends]
[Repetition Phase starts]
Wait 30ms (=30ms * 20).
Send entry.
Wait 60ms (=30ms * 21).
Send entry.
Wait 120ms (=30ms * 22).
Send entry.
[Repetition Phase ends]

[SWS_SD_00332]⌈
If the Service Discovery Module receives a FindService Entry, the following step(s)
shall be performed in the following order:

- Send an “OfferService Entry” considering the appropriate delay (see chapter
7.5.3) without changing the current counter value and without influencing the
current running repetition timer.

⌋()

Note: Currently this specification does not allow sending “FindService Entries” using
unicast. For compatibility reasons receiving such entries shall be supported.

[SWS_SD_00333]⌈
If the Service Discovery Module receives a “SubscribeEventgroup” entry, the
following step(s) shall be performed in the following order:

- Send a SubscribeEventgroupAck / Nack entry using Unicast considering the
appropriate delay (see chapter 7.5.3) without changing the current counter
value and without influencing the current running repetition timer.

- Call the BswM with the API BswM_Sd_EventHandlerCurrentState() with

state SD_EVENT_HANDLER_REQUESTED only if the state for this

EventHandler changed (i.e. has not been SD_EVENT_HANDLER_REQUESTED)

 Specification of Service Discovery
AUTOSAR CP R20-11

74 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

- Start the TTL timer according to the value received via the
SubscribeEventgroup Entry.

⌋()

Note: Currently this specification does not allow sending “SubscribeEventgroup
Entries” using multicast. For compatibility reasons receiving such entries shall be
supported.

[SWS_SD_00334]⌈
If the Service Discovery Module receives a StopSubscribeEventgroup Entry, the
following step(s) shall be performed in the following order:

- Stop the TTL timer for this client
- Update State
- If this has been the last subscribed client, report

“SD_EVENT_HANDLER_RELEASED” to the BswM by calling the API
BswM_Sd_EventHandlerCurrentState().

⌋()

[SWS_SD_00458]⌈
If the TTL of a received SubscribeEventgroup Entry expires, the following step shall
be performed in the following order:

- If this has been the last subscribed client, report

“SD_EVENT_HANDLER_RELEASED” to the BswM by calling the API

BswM_Sd_EventHandlerCurrentState() and update the state within the
Service Discovery Module

⌋()

[SWS_SD_00338]⌈
If a ServerService is set to a state other than SD_SERVER_SERVICE_AVAILABLE

(i.e. SD_SERVER_SERVICE_DOWN) (via Sd_ServerServiceSetState() or

Sd_ServiceGroupStop()) while being in Repetition Phase:

 Leave this phase and enter the Down Phase.

 Sent a StopOfferService.

 All associated EventHandler which state is not
SD_EVENT_HANDLER_RELEASED shall be changed to
SD_EVENT_HANDLER_RELEASED and indicated to the BswM by calling the
API BswM_Sd_EventHandlerCurrentState().

⌋()

[SWS_SD_00340]⌈
If Sd_LocalIpAddrAssignmentChg()is called with a state other than
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Repetition Phase, this phase
shall be left and the Down Phase shall be entered.
⌋()

[SWS_SD_00732]⌈
If the TCP/IP connection has been lost (Socket connection is other than
SOAD_SOCON_ONLINE), the Service Discovery Module shall leave the Repetition
Phase and enter the Wait Phase.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

75 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00341]⌈
When the state SD_SERVER_SERVICE_DOWN is set by

Sd_ServerServiceSetState() or Sd_ServiceGroupStop() in Repetition

Phase, the routing of this Server Service Instance shall be disabled. See
SdServerServiceActivationRef of this Server Service Instance.
⌋()

7.6.3 Main Phase for Server Services

[SWS_SD_00342]⌈
The Service Discovery Module shall stay in the Main Phase for the configured Server
Service as long as the following conditions apply:

 Server Service is in state "SD_SERVER_SERVICE_AVAILABLE" (indicated by

a call of Sd_ServerServiceSetState() or Sd_ServiceGroupStart())

 IP address is assigned and can be used
(i.e. Sd_LocalIpAddrAssignmentChg has been called with status
TCPIP_IPADDR_STATE_ASSIGNED)

⌋()

[SWS_SD_00449]⌈
If SdServerTimerOfferCyclicDelay is greater than 0, in the Main Phase an
OfferService entry shall be sent cyclically with an interval defined by configuration
item SdServerTimerOfferCyclicDelay.
⌋()

[SWS_SD_00450]⌈
The first OfferService is sent SdServerTimerOfferCyclicDelay after the
beginning of the Main Phase.
⌋()

[SWS_SD_00451]⌈
If SdServerTimerOfferCyclicDelay is 0, no OfferService entries shall be sent
in Main Phase for this Server Service Instance.
⌋()

[SWS_SD_00343]⌈
If the Service Discovery Module receives a FindService Entry the following step shall
be performed:

- Send an “OfferService Entry” considering the appropriate delay (see chapter
7.5.3).

⌋()

Note: Currently this specification does not allow sending “FindService Entries” using
unicast. For compatibility reasons receiving such entries shall be supported.

[SWS_SD_00344]⌈
If the Service Discovery Module receives a “SubscribeEventgroup”, the following
step(s) shall be performed in the following order:

 Specification of Service Discovery
AUTOSAR CP R20-11

76 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

- Send a SubscribeEventgroupAck / Nack entry using Unicast considering the
appropriate delay (see chapter 7.5.3) without influencing the current running
main phase timer.

- Report to the BswM SD_EVENT_HANDLER_REQUESTED by calling the API
BswM_Sd_EventHandlerCurrentState().

- Start the TTL timer according to the value received via the
“SubscribeEventgroup”.

⌋()

Note: Currently this specification does not allow sending “SubscribeEventgroup
Entries” using multicast. For compatibility reasons receiving such entries shall be
supported.

[SWS_SD_00345]⌈
If the Service Discovery Module receives a StopSubscribeEventgroup”, the following
step(s) shall be performed in the following order:

- Stop the TTL timer and remove it from the notification list
- If no other client is subscribed to this Eventgroup anymore, enter the State

“SD_EVENT_HANDLER_RELEASED” and report it to the BswM by calling the
API BswM_Sd_EventHandlerCurrentState () with state
SD_SERVER_SERVICE_AVAILABLE.

⌋()

[SWS_SD_00347]⌈
 If the API LocalIpAddrAssignmentChg has been called with a state other than
TCPIP_IPADDR_STATE_ASSIGNED,

 The Service Discovery Module shall leave the Main Phase and enter the
DOWN Phase

 All EventHandler which are not in state SD_EVENT_HANDLER_RELEASED
shall be set to SD_EVENT_HANDLER_RELEASED and be indicated to the
BswM module by calling the API BswM_Sd_EventHandlerCurrentState

⌋()

[SWS_SD_00733]⌈
If the TCP/IP connection has been lost (Socket connection is other than
SOAD_SOCON_ONLINE), the Service Discovery Module shall leave the Main Phase
and enter the Wait Phase.⌋()

[SWS_SD_00348]⌈
If a SdServerService is set to state "SD_SERVER_SERVICE_DOWN" (indicated by a

call of Sd_ServerServiceSetState() or Sd_ServiceGroupStop()) while the

IP address is still assigned (i.e. Sd_LocalIpAddrAssignmentChg has been called with

state TCPIP_IPADDR_STATE_ASSIGNED), the Service Discovery module shall

 send a StopOfferService

 enter the DOWN Phase

 all subscriptions of the eventgroup(s) of this service instance shall be deleted
and SD_EVENT_HANDLER_RELEASED and reported to BswM using the API
BswM_Sd_EventHandlerCurrentState

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

77 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00349]⌈
When the Main Phase is left, the routing of this Server Service Instance shall be
disabled. See SdServerServiceActivationRef of this Server Service Instance.
⌋()

[SWS_SD_00403]⌈

When the TTL timer (contained in TTL field find or Subscribe entry) expires in state

‘‘SD_EVENT_HANDLER_REQUESTED’’,

enter the state SD_EVENT_HANDLER_RELEASED and report it to the BswM by calling
the BswM_Sd_EventHandlerCurrentState().
⌋()

7.6.4 Fan out control

This chapter describes the interaction between Service Discovery and Socket
Adaptor (SoAd) in order to configure the TX path for sending out events (fan out).

[SWS_SD_00452]⌈
The Service Discovery shall keep track of the subscribed clients per Event Handler
and remove clients from the fan out, if the last SubscribeEventgroup entry was longer
ago than the time specified in its TTL field of that SubscribeEventgroup entry.
⌋()

[SWS_SD_00453]⌈
If SdEventHandlerTCP is configured: For every SubscribeEventgroup entry of this
Event Handler, the following shall be done:

o The relevant Routing Groups shall be identified by SdEventHandlerTcp.
o The relevant TCP Socket Connection of this client shall be identified using the

Address/Port of Endpoint Option (UDP) referenced in the
SubscribeEventgroup entry and the SdServerServiceTcpRef, or shall be
set up, if not existed before.

o Check state of incoming TCP connection using SoAd_GetSoConMode. If
mode is not SOAD_SOCON_ONLINE, answer using
SubscribeEventgroupNack. Only if the client was not subscribed before
receiving the aforementioned entry:

o SoAd_EnableSpecificRouting with SdEventActivationRef
and the Socket Connection.

o SoAd_IfSpecificRoutingGroupTransmit with
SdEventTriggeringRef and the Socket Connection.

o Answer using SubscribeEventgroup entry.
⌋()

[SWS_SD_00454]⌈
If SdEventHandlerUDP is configured: For every SubscribeEventgroup entry of this
Eventhandler, the following shall be done:

 The relevant Routing Groups shall be identified by SdEventHandlerUdp.

 The relevant UDP Socket Connection of this client shall be identified using the
Address/Port of Endpoint Option (UDP) referenced in the

 Specification of Service Discovery
AUTOSAR CP R20-11

78 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SubscribeEventgroup entry and the SdServerServiceUdpRef, or shall be
set up (SoAd_SetUniqueRemoteAddr()), if not existed before.

o If no Wildcard Socket Connection is left, SD_E_OUT_OF_RES shall be
reported.

 Only if the client was not subscribed before receiving this entry:
o SoAd_EnableSpecificRouting with SdEventActivationRef

and the Socket Connection depending on current number of subscribed
clients and the SdEventHandlerMulticastThreshhold.

o SoAd_IfSpecificRoutingGroupTransmit with
SdEventTriggeringRef and the Socket Connection.

⌋()

7.6.5 Sharing of SdServerTimer

[SWS_SD_00743] ⌈
If several ServerServices refer to the same SdServerTimer, they shall share a
common timer (and therefore a common random offset), if they either refer to the
same SdServiceGroup and do not refer to any other (additional)
SdServiceGroup or, if SdServerServiceAutoAvailable of all
ServerServices are set to TRUE.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

79 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00455]⌈
The SdEventHandlerMulticastThreshhold shall be used to control when to
enable/disable Unicast/Multicast by using SoAd_EnableSpecificRouting and
SoAd_DisableSpecificRouting:

o If SdEventHandlerMulticastThreshhold = 0: Setup Unicast to every
subscribed client (Multicast always disabled).

o If SdEventHandlerMulticastThreshhold = 1: Setup Multicast if one or
more clients are subscribed (Unicast always disabled).

o If SdEventHandlerMulticastThreshhold > 1:
o Setup Unicast for all subscribed clients if number of subscribed clients <

SdEventHandlerMulticastThreshhold,
o else setup Multicast. Switch dynamically based on the number of

subscribed clients:
o With 0 clients: nothing enabled.
o With clients < threshold: unicast for subscribed clients enabled.

Multicast disabled.
o With clients ≥ threshold: multicast enabled. Unicast disabled.

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

80 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.7 Timings and repetitions for Client Service and Consumed
Eventgroups

The Service Discovery phases allow minimizing the number of Service Discovery
messages sent while allowing for very fast synchronization upon ECU start.

This de-emphasis is realized by the following Phases:

 Down

 Requested

o Initial Wait Phase

o Repetition Phase

o Main Phase

Client Request

Initial Wait Phase Repetition Phase

tx

Main Phase

tx tx tx tx

„Offer Service“ received

DOWN

rx

Figure 16 – Communication phases Client

7.7.1 Down Phase for Client Services

[SWS_SD_00462]⌈
As long as a service is not requested by the BswM, the Service Discovery shall not
send FindService Entry entries.
⌋()

[SWS_SD_00463]⌈
If an OfferService Entry is received during Down Phase,

 The Service Discovery shall store the state of this Service instance.

 A timer shall be set/reset to the TTL value of the received OfferService entry
(TTL timer).

 Until the TTL Timer expires or a StopOfferService entry is received, the
Service instance is considered Available.

⌋()

[SWS_SD_00464]⌈
If a SdClientService is set to state SD_CLIENT_SERVICE_REQUESTED (by call of

Sd_ClientServiceSetState() or Sd_ServiceGroupStart()) while being in

Down Phase:

 If no OfferService entry was received before or its TTL timer expired already:
o The Initial Wait Phase shall be entered,

 Specification of Service Discovery
AUTOSAR CP R20-11

81 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

 If an OfferService entry was received and its TTL timer did not expire yet:
o If SoAd_OpenSoCon() was not called before, the API

SoAd_OpenSoCon() shall be called for all Socket Connections
associated with this Client Service Instance.

o The API SoAd_EnableSpecificRouting() shall be called with
SdClientServiceActivationRef (see SdConsumedMethods) and
the relevant Socket Connections for this Client Service Instance.

o Open TCP connection if SdClientServiceTcpRef is configured and
was not opened before.

o The Main Phase shall be entered.
⌋()

7.7.2 Initial Wait Phase for Client Services

This chapter describes the behavior of the Service Discovery in regard of a Client
Service Instance in the Initial Wait Phase.

[SWS_SD_00350]⌈
If the following conditions apply, the Initial Wait Phase for this configured Client
Service Instance shall be entered:

 Sd_Init() has been called.

 SdClientService was set to state SD_CLIENT_SERVICE_REQUESTED

(indicated by a call of Sd_ClientServiceSetState() or

Sd_ServiceGroupStart() or SdClientServiceAutoRequired = TRUE)

 Sd_LocalIpAddrAssignmentChg() with state

“TCPIP_IPADDR_STATE_ASSIGNED” has been called for the first IpAddrId

associated with the SdInstanceTxPdu.
⌋()

[SWS_SD_00604]⌈

When a OfferService for a required Client Service is received and

SoAd_OpenSoCon()was not called before, the API SoAd_OpenSoCon()

shall be called for all Socket Connections associated with this Client Service
Instance.

⌋()

[SWS_SD_00351]⌈
This Client Service Instance shall stay in the Initial Wait Phase for a time within the

configured range of SdClientTimerInitialFindDelayMin and

SdClientTimerInitialFindDelayMax unless an OfferService entry for this

Client Service Instance is received or this random timer expires.
⌋()

[SWS_SD_00352]⌈
If an OfferService Entry for this Client Service Instance is received within the Initial
Wait Phase,

 Specification of Service Discovery
AUTOSAR CP R20-11

82 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

 The calculated random timer, which has been started when entering the Initial
Wait Phase, shall be canceled.

 If received TTL is not equal to the max value, set the TTL timer for this entry to
the received TTL value.

 Open TCP connection if SdClientServiceTcpRef is configured and was
not opened before.

 Leave the Initial Wait Phase Enter the Main Phase.

⌋()

[SWS_SD_00353]⌈
When the calculated random timer based on the parameters

SdClientTimerInitialFindDelayMin and

SdClientTimerInitialFindDelayMax expires (i.e. no OfferService has been

received within this timespan), the following shall be done in the following order:
o FindService Entry shall be sent.

o If the SdClientTimerInitialFindRepetitionsMax>0, enter the

Repetition Phase

o If the SdClientTimerInitialFindRepetitionsMax=0, enter the Main

Phase

⌋()

[SWS_SD_00355]⌈
If a SdClientService it set to state SD_CLIENT_SERVICE_RELEASED (by call of

Sd_ClientServiceSetState() or Sd_ServiceGroupStop()) while being in

Initial Wait Phase, this phase shall be left and the Service shall enter Down Phase.
⌋()

[SWS_SD_00456]⌈
If for any reasons the Initial Wait Phase is left, the calculated random timer (of the
Initial Wait Phase) for this Service Instance shall be stopped.
⌋()

[SWS_SD_00357]⌈
If Sd_LocalIpAddrAssignmentChg() is called with a state other than
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Initial Wait Phase, the Down
Phase shall be entered.

⌋()

[SWS_SD_00354]⌈
If the API Sd_Init() is called while being in Initial Wait Phase, the Down Phase shall
be entered.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

83 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.7.3 Repetition Phase for Client Services

[SWS_SD_00358]⌈
When the Repetition Phase is entered, the Service Discovery Module shall start the
timer SdClientTimerInitialFindRepetitionsBaseDelay
⌋()

[SWS_SD_00457]⌈
When the timer SdClientTimerInitialFindRepetitionsBaseDelay expires
within the Repetition Phase, a FindOffer Message shall be sent.
⌋()

[SWS_SD_00363]⌈
In the Repetition Phase up to SdClientTimerInitialFindRepetitionsMax

FindServer entries shall be sent with doubling intervals (BaseDelay, first FindService
Entry, 2x BaseDelay, second FindService Entry, 4x BaseDelay, third FindService
Entry, …).
⌋()

Note: Example config and resulting behavior (no OfferService received during
example):

SdClientTimerInitialFindRepetitionBaseDelay=30

SdClientTimerInitialFindRepetitionMax=3

[Initial Wait Phase starts]
Wait Initial Wait Delay based on Configured Min and Max
Send entry.
[Initial Wait Phase ends]
[Repetition Phase starts]
Wait 30ms (=30ms * 20).
Send entry.
Wait 60ms (=30ms * 21).
Send entry.
Wait 120ms (=30ms * 22).
Send entry.
[Repetition Phase ends]

 Specification of Service Discovery
AUTOSAR CP R20-11

84 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00365]⌈
If the Service Discovery Module receives an OfferService Entry while the current
state SD_CLIENT_SERVICE_REQUESTED is for this Client Service Instance, the
following step(s) shall be performed in the following order:

- Cancel the repetition timer.
- If received TTL is not equal to the max value, set the TTL timer for this entry to

the received TTL value.
- Open TCP connection if SdClientServiceTcpRef is configured and was

not opened before.
- Leave the Repetition Phase immediately and enter the Main Phase.

⌋()

[SWS_SD_00751]⌈
If the Service Discovery Module receives an StopOfferService Entry while the current
state SD_CLIENT_SERVICE_REQUESTED is for this Client Service Instance, the
following step(s) shall be performed in the following order:

- Cancel the repetition timer.
- Leave the Repetition Phase immediately and enter the Main Phase.

⌋()

[SWS_SD_00369]⌈
After sending the maximum amount of repetitions (defined by

SdClientTimerInitialFindRepetitionsMax) of FindService entries,

the Repetition Phase shall be left and the Main Phase shall be entered.
⌋()

[SWS_SD_00371]⌈
If SdClientService it set to state SD_CLIENT_SERVICE_RELEASED (by call of

Sd_ClientServiceSetState() or Sd_ServiceGroupStop()) while being in

Repetition Phase, this phase shall be left and the service instance shall enter Down
Phase.
⌋()

[SWS_SD_00373]⌈
If Sd_LocalIpAddrAssignmentChg() is called with a state other than
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Repetition Phase the Down
Phase shall be entered.
⌋()

[SWS_SD_00730]⌈
If the TCP/IP connection has been lost (Socket connection is other than
SOAD_SOCON_ONLINE), the Service Discovery Module shall leave the Repetition
Phase, enter the Wait Phase, and stop the TTL timers of the associated Client
Service Instances and EventGroups.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

85 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.7.4 Main Phase for Client Services

[SWS_SD_00375]⌈
The Service Discovery Module shall stay in the Main Phase as long as the following
conditions apply:

 Client Service was set to state "SD_CLIENT_SERVICE_REQUESTED"

(indicated by a call of Sd_ClientServiceSetState() or
Sd_ServiceGroupStart())

 IP address assigned and can be used (i.e.
Sd_LocalIpAddrAssignmentChg has been called with status
TCPIP_IPADDR_STATE_ASSIGNED).

⌋()

[SWS_SD_00376]⌈
If the Service Discovery Module receives an OfferService Entry, the following step(s)
shall be performed in the following order:

- If received TTL is not equal to the max value, update the timer by the received
TTL value.

- Open TCP connection if SdClientServiceTcpRef is configured and was
not opened before.

- For each currently requested Consumed Eventgroup of this Client Service
Instance (Consumed Eventgroups are requested using
Sd_ConsumedEventGroupSetState and with state
SD_CONSUMED_EVENTGROUP_REQUESTED or automatically on startup if
SdConsumedEventGroupAutoRequire is configured to true), the following
shall be done in exactly this order:

o StopSubscribeEventgroup entry shall be sent out, if the last
SubscribeEventgroup entry was sent as reaction to an OfferService
entry received via Multicast, it was never answered with a
SubscribeEventgroupAck, and the current OfferService entry was
received via Multicast.

o A SubscribeEventgroup entry shall be sent out.
- If SdSubscribeEventgroupRetryEnable is set to TRUE and if

SdSubscribeEventgroupRetryMax is greater 0, the Eventgroup subscription
retry counter shall be reset to 1.

⌋()

Note: The amount of separate Service Discovery messages shall be reduced, i.e.:
Combine as much information as possible into one Service Discovery message
before calling the Socket Adaptor’s transmit API.

[SWS_SD_00721]⌈
If an OfferService entry was received and its TTL timer did not expire yet, the
associated Socket Connections are in state SOAD_SOCON_ONLINE in the Main
phase:

- If the client service has not been reported as
SD_CLIENT_SERVICE_AVAILABLE:

 Specification of Service Discovery
AUTOSAR CP R20-11

86 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

o the API SoAd_EnableSpecificRouting() shall be called with
SdClientServiceActivationRef (see SdConsumedMethods)
and the relevant Socket Connections for this Client Service
Instance.

o SD_CLIENT_SERVICE_AVAILABLE shall be indicated to the BswM
module by calling the API
BswM_Sd_ClientServiceCurrentState().

- For each currently requested Consumed Eventgroup of this Client Service
Instance (Consumed Eventgroups are requested using
Sd_ConsumedEventGroupSetState() and with state
SD_CONSUMED_EVENTGROUP_REQUESTED or automatically on startup
if SdConsumedEventGroupAutoRequire is configured to true), the
following shall be done in exactly this order:

o StopSubscribeEventgroup entry shall be sent out, if the last
SubscribeEventgroup entry was sent as reaction to an OfferService
entry received via Multicast, it was never answered with a
SubscribeEventgroupAck, and the current OfferService entry was
received via Multicast.

o A SubscribeEventgroup entry shall be sent out.

- If SdSubscribeEventgroupRetryEnable is set to TRUE and if

SdSubscribeEventgroupRetryMax is greater 0, the Eventgroup

subscription retry counter shall be reset to 1.
⌋()

Note:
Refer to SWS_SD_00702, SWS_SD_00703 and SWS_SD_00704 for the enabling of
routing groups. The transmission of a response to an Offer received via multicast
shall be delayed with the configured delay. When the request response delay
elapses before the associated Socket Connections are in state
SOAD_SOCON_ONLINE, the StopSubscribeEventgroup and SubscribeEventgroup
shall be delayed until the Socket Connections are online and shall not be considered
as reaction to an OfferService entry received via Multicast. When the request
response delay elapses while the ClientService is in state RELEASED, there shall be
no response to this Offer entry.

[SWS_SD_00722]⌈
When the Client Service is reported as SD_CLIENT_SERVICE_DOWN to the BswM
by calling the API BswM_Sd_ClientServiceCurrentState()

- the API SoAd_DisableSpecificRouting() shall be called with
SdClientServiceActivationRef (see SdConsumedMethods) and the relevant
Socket Connections for this Client Service Instance.

⌋()

[SWS_SD_00695]⌈
If a StopSubscribeEventgroup and SubscribeEventgroup for the same Eventgroup
(i.e. same Service ID, Instance ID, Eventgroup ID, Counter, and Major Version) have

 Specification of Service Discovery
AUTOSAR CP R20-11

87 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

to be sent out, these entries have to be directly after each other in the same SD
message (no entry between them).
⌋()

[SWS_SD_00377]⌈
If the Service Discovery Module receives a SubscribeEventgroupAck fitting a
Consumed Eventgroup that is not yet available, the following steps shall be
performed in the following order:

 If the SubscribeEventgroupAck references a Multicast Endpointoption
o The relevant Socket Connection Group shall be identified using

SdConsumedEventGroupMulticastGroupRef with the local
Address and Port of the Multicast Endpoint Option or set one up using
SoAd_RequestIpAddrAssignment().

o If SdSetRemAddrOfClientRxMulticastSoCon is set to TRUE, the
relevant Socket Connection of this service shall be identified using the
Address and Port of the Endpoint Option referenced in the Offer entry
of this service or shall be set up (SoAd_SetUniqueRemoteAddr()),
if not existed before.

 If no Wildcard Socket Connection is left, SD_E_OUT_OF_RES
shall be reported.

o If SdSetRemAddrOfClientRxMulticastSoCon is set to FALSE, a
Wildcard Socket Connection of this service shall be used without
updating the according remote Address, i.e. Wildcard of this Socket
Connection shall be kept.

 If no Wildcard Socket Connection is left, SD_E_OUT_OF_RES
shall be reported.

o The relevant Routing Group shall be identified by following
SdConsumedEventGroupMulticastActivationRef.

o Call SoAd_EnableSpecificRouting() with the SocketID and the
RoutingGroupID .

 Call BswM_Sd_ConsumedEventGroupCurrentState with
SD_CONSUMED_EVENTGROUP_AVAILABLE if the datapath was set up
successfully.

 Setup the TTL timer with the TTL of the SubscribeEventgroupAck entry if the
datapath was set up successfully.

⌋()

[SWS_SD_00465]⌈
If a Service Discovery Message contains only a SubscribeEventgroupNack entry but
no SubscribeEventgroupAck entry for the same Eventgroup, Service Discovery shall
do the following:

 Report the DEM error SD_E_SUBSCR_NACK_RECV (see ECUC_SD_00123)

 If SdClientServiceTcpRef is configured for this service, determine the

used SoCon and call the API SoAd_CloseSoCon() with the SoConID and

parameter abort set to TRUE

 If SdClientServiceTcpRef is configured for this service, determine the used

SoCon and call the API SoAd_OpenSoCon() with the SoConID.

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

88 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00367]⌈
If the Service Discovery Module receives a StopOfferService Entry, the following
step(s) shall be performed in the following order:

- Stop the TTL timers of this Client Service Instance and all related Consumed
Eventgroups.

- Report this Client Service as DOWN if it was reported AVAILABLE before (call
BswM_Sd_ClientServiceCurrentState with
SD_CLIENT_SERVICE_DOWN and the Client Service’s handle ID).

- Report all Consumed Eventgroups as DOWN that were reported AVAILABLE
before (call BswM_Sd_ConsumedEventGroupCurrentState with
SD_CONSUMED_EVENTGROUP_DOWN and the Consumed Eventgroup’s handle
ID).

- If SdSubscribeEventgroupRetryEnable is set to TRUE and if

SdSubscribeEventgroupRetryMax is greater 0, cancel the corresponding

client service subscription retry delay timer and reset subscription retry
counter of all corresponding Eventgroups to 0.

- Close all Socket Connections associated with this Client Service Instance that
have been opened before.

- Stay in Main Phase and do not send FindService entries.
⌋()

[SWS_SD_00741]⌈
If a Consumed Eventgroup switches to the state

SD_CONSUMED_EVENTGROUP_REQUESTED while the corresponding state of the

requested Service Instance was already set to SD_CLIENT_SERVICE_AVAILABLE

(due to an already received Offer Service with TTL 0xFFFFFF), a
SubscribeEventgroup entry shall be sent out only if all of the following conditions
apply:

 SdSubscribeEventgroupRetryEnable is set to TRUE,

 SdSubscribeEventgroupRetryMax is greater 0,

⌋()

Note:
Requirement [SWS_SD_00741] ensures that a Client can still subscribe to
Eventgroups at any point in time when it is needed, even though cyclic Offers of the
corresponding ServerService are not present in the main phase
(SdServerTimerOfferCyclicDelay set to 0). In this case, no cyclic Offer is
needed for triggering the transmissions of SubscribeEventgroup entries.

 Specification of Service Discovery
AUTOSAR CP R20-11

89 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00712]⌈
If Sd_LocalIpAddrAssignmentChg() is called with a state other than
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Main Phase:

 The Down Phase shall be entered.

 “SD_CLIENT_SERVICE_DOWN” shall be indicated to the BswM module by
calling the API BswM_Sd_ClientServiceCurrentState(), if the present state is
SD_CLIENT_SERVICE_AVAILABLE.

 “SD_CONSUMED_EVENTGROUP_DOWN” shall be indicated to the BswM module
by calling the API BswM_Sd_ConsumedEventGroupCurrentState() for all
associated ConsumedEventgroups, if the present state is
SD_CONSUMED_EVENTGROUP_AVAILABLE.

 If SdSubscribeEventgroupRetryEnable is set to TRUE and if
SdSubscribeEventgroupRetryMax is greater 0, cancel the corresponding client
service subscription retry delay timer and reset subscription retry counter of all
corresponding Eventgroups to 0.

⌋()

[SWS_SD_00731]⌈
If the TCP/IP connection has been lost (Socket connection is other than
SOAD_SOCON_ONLINE), the Service Discovery Module shall leave the Main
Phase, enter the Wait Phase, and stop the TTL timers of the associated Client
Service Instances and EventGroups.

⌋()

[SWS_SD_00380]⌈
The Service Discovery Module shall leave the Main Phase and enter the state

SD_CLIENT_SERVICE_DOWN if at least one of the listed conditions described in

SWS_SD_00375 does not apply any more.
⌋()

[SWS_SD_00381]⌈
If a SdClientService is set to state "SD_CLIENT_SERVICE_RELEASED" (indicated by

a call of Sd_ClientServiceSetState() or Sd_ServiceGroupStop()) while all

other conditions listed in SWS_SD_00375 still apply, the Service Discovery module
shall perform the following steps:

 Enter the Down Phase and indicate the state SD_CLIENT_SERVICE_DOWN to

the BswM by calling the API BswM_Sd_ClientServiceCurrentState
().

 For all subscribed eventgroups of this Client Service,
o a StopSubscribeEventgroup shall be sent

o the status shall be set to SD_CONSUMED_EVENTGROUP_DOWN and

reported to BswM by calling the API
BswM_Sd_ConsumedEventGroupCurrentState().

 If SdSubscribeEventgroupRetryEnable is set to TRUE and if
SdSubscribeEventgroupRetryMax is greater 0, cancel the corresponding client
service subscription retry delay timer and reset subscription retry counter of all
corresponding Eventgroups to 0.

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

90 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00713]⌈
If the Consumed Event Group is not requested anymore as indicated by a call of
Sd_ConsumedEventGroupSetState with state

SD_CONSUMED_EVENTGROUP_RELEASED, the Service Discovery module shall

perform the following steps for the consumed event group:

 A StopSubscribeEventgroup shall be sent.

 The status shall be set to SD_CONSUMED_EVENTGROUP_DOWN and be

reported to the BswM by calling the API
BswM_Sd_ConsumedEventGroupCurrentState(), if the status is not currently
SD_CONSUMED_EVENTGROUP_DOWN.

 If SdSubscribeEventgroupRetryEnable is set to TRUE and if
SdSubscribeEventgroupRetryMax is greater 0, cancel the corresponding client
service subscription retry delay timer and reset subscription retry counter of all
corresponding Eventgroups to 0.

⌋()

[SWS_SD_00600]⌈
If the TTL Timer of a Client Service expires, the Service Discovery module shall
perform the following steps:

 Enter the Initial Wait Phase and indicate the state

SD_CLIENT_SERVICE_DOWN to the BswM by calling the API
BswM_Sd_ClientServiceCurrentState ().

 All subscribed Eventgroups of this Client Service shall expired in this instance
(stop TTL timer) and the expiration shall be handled as describe in
SWS_SD_00601.

⌋()

[SWS_SD_00601]⌈
If the TTL Timer of an Eventgroup expires, the Service Discovery module shall
perform the following step(s):

 the status shall be set to SD_CONSUMED_EVENTGROUP_DOWN and reported to

BswM by calling the API

BswM_Sd_ConsumedEventGroupCurrentState().

⌋()

[SWS_SD_00382]⌈
When the Main Phase is left,

- The API SoAd_DisableSpecificRouting()shall be called for all Socket

Connections associated with this Client Service ID that have been opened
before.

- Close all Socket Connections associated with this Client Service Instance that
have been opened before.

⌋()

7.7.5 Fan in control

This section describes the interaction between Service Discovery and Socket
Adaptor (SoAd) to configure the RX path for receiving events (fan in).

 Specification of Service Discovery
AUTOSAR CP R20-11

91 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00702]⌈
If SdConsumedEventGroupTcpActivationRef is configured: When sending

SubscribeEventgroup entries for this Eventgroup, the following shall be done:

 The relevant Routing Group shall be identified by following
SdConsumedEventGroupTcpActivationRef.

 The relevant TCP Socket Connection shall be identified by

SdClientServiceTcpRef.

 A TCP Endpoint option shall be constructed with these parameters.

 Only if this client is currently not subscribed yet:

o SoAd_EnableSpecificRouting with the two parameters above.

⌋()

[SWS_SD_00703]⌈
If SdConsumedEventGroupUdpActivationRef is configured: When sending

SubscribeEventgroup entries for this Eventgroup, the following shall be done:

 The relevant Routing Group shall be identified by following
SdConsumedEventGroupUdpActivationRef.

 The relevant TCP Socket Connection shall be identified by

SdClientServiceUdpRef.

 A UDP Endpoint option shall be constructed with these parameters.

 Only if this client is currently not subscribed yet:

o SoAd_EnableSpecificRouting with the two parameters above.

⌋()

[SWS_SD_00704]⌈
If SdConsumedEventGroupMulticastActivationRef is configured: When

receiving SubscribeEventgroupAck entries for this Eventgroup and with a referenced
Multicast Endpoint Option, the following shall be done if this client is currently not
subscribed yet:

 The relevant Routing Group shall be identified by following
SdConsumedEventGroupMulticastActivationRef.

 The relevant UDP Socket Connection shall be identified:
o Find the relevant Socket Connection Group using

SdConsumedEventGroupMulticastGroupRef with the local

Address and Port of the Multicast Endpoint Option or set one up.
o Find the relevant Socket Connection in this Socket Connection Group

by finding the Address and Port of this Services Endpoint or set one up.

 SoAd_EnableSpecificRouting with the two parameters above.

⌋()

[SWS_SD_00711]⌈
Routing Groups of EventGroups (see SdConsumedEventGroupTcpActivationRef,

SdConsumedEventGroupUdpActivationRef, and

SdConsumedEventGroupMulticastActivationRef)

shall be deactivated, if they are not needed anymore (Main phase was left, StopOffer
received or ConsumedEventgroup was released).
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

92 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.7.6 Sharing of SdClientTimer

[SWS_SD_00744] ⌈
If several ClientServices refer to the same SdClientTimer, they shall share a
common timer (and therefore a common random offset), if they either refer to the
same SdServiceGroup and do not refer to any other (additional)
SdServiceGroup or, if SdClientServiceAutoRequire of all ClientServices
are set to TRUE.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

93 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

[SWS_SD_00706]⌈
Every wildcard socket connection shall be reset to wildcard using

ReleaseRemoteAddr() if all of the following conditions apply:

 The remote address of the socket connection has been set by SD according to
SWS_SD_00377.

 No Eventgroup Subscription for this socket connection is used anymore.

⌋()

[SWS_SD_00734]⌈
Every wildcard socket connection group shall be reset to wildcard using

SoAd_ReleaseIpAddrAssignment() if all of the following conditions apply:

 Local address of the socket connection group has been set by SD according
to SWS_SD_00377.

 All socket connections of this socket connection group have been released.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

94 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.8 Handling of SdServiceGroupS

7.8.1 SdServiceGroup definitions

For a SdServiceGroup the following rules apply:

1. A SdClientService and SdServerService, respectively, can belong to any
SdServiceGroup.

2. A SdClientService and SdServerService, respectively, is requested and
available, respectively, if it belong to a started SdServiceGroup (see
SWS_SD_00745). If a SdClientService and SdServerService, respectively,
does not belong to any SdServiceGroup, the SdClientService and
SdServerService, respectively, has to be requested and set to available via
Sd_ServerServiceSetState() or Sd_ClientServiceSetState()
explictly (see SWS_SD_00746).

3. SdClientServices and SdServerServices of different SdInstances could
reference the same SdServiceGroup

Note:

Rules 1 and 3 are supported by the ServiceDiscovery configuration.

[SWS_SD_00745]⌈
A SdClientService and SdServerService, respectively, is requested and available,
respectively, if at least one SdServiceGroup is started it refers to.
⌋()

Note:

It is expected that the complete state handling of SdServiceGroup is done outside of
the AUTOSAR ServiceDiscovery module, e.g. within the Basic Software Mode
Manager. In case of a state change, the module that managing the SdServiceGroup
states consistently starts or stops the SdServiceGroup via
Sd_ServiceGroupStart() and Sd_ServiceGroupStop().
The state of SdClientServiceS and SdServerServiceS that are NOT reference any
SdServiceGroup can be changed only via a direct call of Sd_ClientServiceSetState
and Sd_ServerServiceSetState, respectively.

[SWS_SD_00746]⌈
The state of a SdClientService and a SdServerService, respectively, which refer to at
least one SdServiceGroup shall only be changed via Sd_ServiceGroupStart and
Sd_ServiceGroupStop, respectively. The state of a SdClientService and
SdServerService, respectively, which do NOT reference any SdServiceGroup, shall
only be changed via Sd_ClientServiceSetState() and
Sd_ServerServiceSetState(), respectively.
⌋()

[SWS_SD_00747]⌈
The AUTOSAR ServiceDiscovery module shall keep track of requests and
availabilities per SdClientServiceS and SdServerServiceS, respectively, which

 Specification of Service Discovery
AUTOSAR CP R20-11

95 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

reference at least one SdServiceGroup. Therefore each affected SdClientService
and SdServerService shall have a client request counter and server availability
counter, respectively. Each time Sd_ServiceGroupStart() is called, the client
request counter shall be incremented for all affected SdClientServices and the server
availability counter shall be incremented for all affected SdServerServices. Each time
Sd_ServiceGroupStop() is called the client request counter shall be
decremented for all affected SdClientServices, and the server availability counter
shall be decremented for all affected SdServerServices.
⌋()

7.8.1.1 Initialization of SdServiceGroupS

[SWS_SD_00748]⌈
By default, all SdServiceGroupS shall be in the state stopped and they shall not be
started automatically by a call to Sd_Init.
⌋()

7.8.1.2 Starting of SdServiceGroupS

By default all SdServiceGroupS are stopped, see SWS_SD_00748. A call to
Sd_ServiceGroupStart() starts a SdServiceGroup if it was previously stopped.

[SWS_SD_00749]⌈
If an SdServiceGroup is started by Sd_ServiceGroupStart(), the AUTOSAR
Service Discovery module shall set all SdClientServiceS which are referencing the
affected SdServiceGroup to SD_CLIENT_SERVICE_REQUESTED and all
SdServerServiceS which are referencing the affected SdServiceGroup to
SD_SERVER_SERVICE_AVAILABLE.

⌋()

7.8.1.3 Stopping of SdServiceGroupS

A call to Sd_ServiceGroupStop() stops an SdServiceGroup, if it was previously
started.

[SWS_SD_00750]⌈
If an SdServiceGroup is stopped by Sd_ServiceGroupStop(), the AUTOSAR
Service Discovery module shall set all SdClientServiceS, which are referencing the
affected SdServiceGroup to SD_CLIENT_SERVICE_RELEASED where the
corresponding client request counter (see SWS_SD_00747) has reached 0, and all
SdServerServices which are referencing the affected SdServiceGroup to
SD_SERVER_SERVICE_DOWN where the corresponding server availability counter
(see SWS_SD_00747) has reached 0.

⌋()

7.9 Extended Production Errors

Error Name: SD_E_OUT_OF_RES

 Specification of Service Discovery
AUTOSAR CP R20-11

96 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Short Description: SD out of resources

Long Description: SD Instance does not have SoAd socket resources left to add client to
Fan-Out.

Recommended DTC: N/A

Detection Criteria:

FAIL Every time when a Socket connection has to be opened
but no Wildcard Socket Connection is available.

PASS After first startup until first error occurred.

Secondary Parameters:
Local IP-Address and Port Number of Socket Connection Group that has
not enough Wildcard Socket Connections left

Time Required: N/A

Monitor Frequency Continuous

MIL illumination: N/A

Error Name: SD_E_MALFORMED_MSG

Short Description: SD received malformed SOME/IP-SD message

Long Description: The Service Discovery module received an inconsistent SOME/IP-SD
message. This includes:

 Inconsistent combination of SOME/IP length, entries length, and
options length

 Inconsistent length field of option

 Illegal values of fields (e.g. IP Addresses and Ports).

Recommended DTC: N/A

Detection Criteria:

FAIL Every time a malformed SOME/IP-SD message has been
received

PASS After first startup until first error occurred.

Secondary Parameters: IP Address of Sender (Source IP Address)

Time Required: N/A

Monitor Frequency Continuous

MIL illumination: N/A

Error Name: SD_E_SUBSCR_NACK_RECV

Short Description: SD received SubscribeEventgroupNack entry

Long Description: The Service Discovery module received a SubscribeEventgroupNack
entry, which is not expected.

Recommended DTC: N/A

Detection Criteria:
FAIL Every time a NACK is received.

PASS After first startup until first error occurred.

Secondary Parameters: IP Address of Sender (Source IP Address)

Time Required: N/A

Monitor Frequency Continuous

MIL illumination: N/A

 Specification of Service Discovery
AUTOSAR CP R20-11

97 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

7.10 Error classification

Section 7.2 "Error Handling" of the document "General Specification of Basic
Software Modules" [7] describes the error handling of the Basic Software in detail.
Above all, it constitutes a classification scheme consisting of five error types which
may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.10.1 Development Errors

[SWS_SD_00107]⌈

Type of error Related error code Error value

SD has not been initialized SD_E_UNINIT 0x01

Null pointer has been passed as an argument SD_E_PARAM_POINTER 0x02

Invalid mode request SD_E_INV_MODE 0x03

Invalid Id SD_E_INV_ID 0x04

Initialization failed SD_E_INIT_FAILED 0x05

⌋()

[SWS_SD_00108]⌈
The detection of development errors shall be configurable (ON / OFF) at pre-compile

time. The switch SdDevErrorDetect (see chapter 9) shall activate or deactivate the

detection of all development errors.
⌋()

[SWS_SD_00109]⌈
If the SdDevErrorDetect switch is enabled API parameter checking is enabled.⌋()

Note: The detection of production code errors cannot be switched off.

[SWS_SD_00110]⌈
Detected development errors shall be reported to the Det_ReportError service of

the Default Error Tracer (DET) if the pre-processor switch SdDevErrorDetect is

set (see chapter 10).

⌋()

7.10.2 Runtime Errors

[SWS_SD_00742]⌈

 Specification of Service Discovery
AUTOSAR CP R20-11

98 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Type of error Related error code
Error
value

Retry was not
successful

SD_E_COUNT_OF_RETRY_SUBSCRIPTION_
EXCEEDED

0x06

⌋()

7.10.3 Transient Faults

There are no transient faults.

7.10.4 Production Errors

There are no Production Errors.

7.10.5 Extended Production Errors

[SWS_SD_00707]⌈
The following table lists production errors that shall be distinguished by the Sd
module:
Type or error Relevance Related error code Value

[hex]

Received Malformed
Message

Extended
Production SD_E_MALFORMED_MSG

Assigned by
DEM

Out of resources

Extended
Production SD_E_OUT_OF_RES

Assigned by
DEM

Negative Acknowledge
received

Extended
Production SD_E_SUBSCR_NACK_RECV

Assigned by
DEM

Table 3 – Error classification (Extended Production Errors)

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

99 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8 API specification

8.1 Imported Types

[SWS_SD_00117]⌈

Module Header File Imported Type

ComStack_Types

ComStack_Types.h PduIdType

ComStack_Types.h PduInfoType

ComStack_Types.h PduLengthType

Dem
Rte_Dem_Type.h Dem_EventIdType

Rte_Dem_Type.h Dem_EventStatusType

SoAd

SoAd.h SoAd_RoutingGroupIdType

SoAd.h SoAd_SoConIdType

SoAd.h SoAd_SoConModeType

Std
Std_Types.h Std_ReturnType

Std_Types.h Std_VersionInfoType

TcpIp

TcpIp.h TcpIp_DomainType

TcpIp.h TcpIp_IpAddrAssignmentType

TcpIp.h TcpIp_IpAddrStateType

TcpIp.h TcpIp_SockAddrType

⌋()

8.2 Type definitions

8.2.1 Sd_ConfigType

[SWS_SD_00690]⌈

Name Sd_ConfigType

Kind Structure

Elements

implementation specific

Type --

Comment
The content of the configuration data structure is implementation
specific.

Description Configuration data structure of Sd module.

 Specification of Service Discovery
AUTOSAR CP R20-11

100 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Available
via

Sd.h

⌋()

8.2.2 Sd_ServerServiceSetStateType

[SWS_SD_00118]⌈

Name Sd_ServerServiceSetStateType

Kind Enumeration

Range
SD_SERVER_SERVICE_DOWN 0x00 --

SD_SERVER_SERVICE_AVAILABLE 0x01 --

Description
This type defines the Server states that are reported to the SD using the expected
API Sd_ServerServiceSetState.

Available
via

Sd.h

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

101 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.2.3 Sd_ClientServiceSetStateType

[SWS_SD_00405]⌈

Name Sd_ClientServiceSetStateType

Kind Enumeration

Range
SD_CLIENT_SERVICE_RELEASED 0x00 --

SD_CLIENT_SERVICE_REQUESTED 0x01 --

Description
This type defines the Client states that are reported to the BswM using the expected
API Sd_ClientServiceSetState.

Available
via

Sd.h

⌋()

8.2.4 Sd_ConsumedEventGroupSetStateType

[SWS_SD_00550]⌈

Name Sd_ConsumedEventGroupSetStateType

Kind Enumeration

Range
SD_CONSUMED_EVENTGROUP_RELEASED 0x00 --

SD_CONSUMED_EVENTGROUP_REQUESTED 0x01 --

Description
This type defines the subscription policy by consumed EventGroup for the Client
Service.

Available
via

Sd.h

⌋()

8.2.5 Sd_ClientServiceCurrentStateType

[SWS_SD_00551]⌈

Name Sd_ClientServiceCurrentStateType

Kind Enumeration

Range
SD_CLIENT_SERVICE_DOWN 0x00 --

SD_CLIENT_SERVICE_AVAILABLE 0x01 --

Description This type defines the modes to indicate the current mode request of a Client Service.

Available via Sd.h

 Specification of Service Discovery
AUTOSAR CP R20-11

102 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

⌋()

8.2.6 Sd_ConsumedEventGroupCurrentStateType

[SWS_SD_00552]⌈

Name Sd_ConsumedEventGroupCurrentStateType

Kind Enumeration

Range
SD_CONSUMED_EVENTGROUP_DOWN 0x00 --

SD_CONSUMED_EVENTGROUP_AVAILABLE 0x01 --

Description
This type defines the subscription policy by consumed EventGroup for the Client
Service.

Available
via

Sd.h

⌋()

8.2.7 Sd_EventHandlerCurrentStateType

[SWS_SD_00553]⌈

Name Sd_EventHandlerCurrentStateType

Kind Enumeration

Range
SD_EVENT_HANDLER_RELEASED 0x00 --

SD_EVENT_HANDLER_REQUESTED 0x01 --

Description This type defines the subscription policy by EventHandler for the Server Service.

Available via Sd.h

⌋()

8.2.8 Sd_ConfigOptionStringType

[SWS_SD_91002]⌈

Name Sd_ConfigOptionStringType

Kind Const Pointer

Type const uint8*

Description Type for a zero-terminated string of configuration options.

Available via Sd.h

 Specification of Service Discovery
AUTOSAR CP R20-11

103 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

104 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.2.9 Sd_ServiceGroupIdType

[SWS_SD_91008]⌈

Name Sd_ServiceGroupIdType

Kind Type

Derived from uint16

Range 0..65535 -- Zero-based integer number

Description The AUTOSAR ServiceDiscovery module's SdServiceGroup object identifier.

Available via Sd.h

⌋()

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 Sd_Init

[SWS_SD_00119]⌈

Service Name Sd_Init

Syntax

void Sd_Init (

 const Sd_ConfigType* ConfigPtr

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to a selected configuration structure.

Parameters (inout) None

Parameters (out) None

Return value None

Description Initializes the Service Discovery.

Available via Sd.h

⌋()
[SWS_SD_00120]⌈

 Specification of Service Discovery
AUTOSAR CP R20-11

105 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

The Sd_Init function shall initialize the state machines for all Service Instances

according to SWS_SD_00020 and SWS_SD_00021. ⌋()

[SWS_SD_00121]⌈
The Sd_Init function shall internally store the configuration data address to enable

subsequent API calls to access the configuration data.
⌋()

[SWS_SD_00122]⌈
The Sd_Init function shall remember internally the successful initialization for other

API functions to check for proper module initialization.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

106 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.3.2 Sd_GetVersionInfo

[SWS_SD_00124]⌈

Service Name Sd_GetVersionInfo

Syntax

void Sd_GetVersionInfo (

 Std_VersionInfoType* versioninfo

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via Sd.h

⌋()

[SWS_Sd_00125]⌈
The Sd_GetVersionInfo function shall return the version information of this

module. The version information includes:
- Module Id
- Vendor Id
- Vendor specific version numbers

⌋()

[SWS_SD_00126]⌈
Configuration of Sd_GetVersionInfo: This function shall be pre compile time

configurable On/Off by the configuration parameter: SdVersionInfoApi

⌋()

[SWS_SD_00497]⌈
If development error detection for the Service Discovery module is enabled, then the

function Sd_GetVersionInfo shall check whether the parameter VersioninfoPtr is

a NULL pointer (NULL_PTR). If VersioninfoPtr is a NULL pointer, then the function

Sd_GetVersionInfo shall raise the development error SD_E_PARAM_POINTER

and return. ⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

107 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.3.3 Sd_ServerServiceSetState

[SWS_SD_00496]⌈

Service Name Sd_ServerServiceSetState

Syntax

Std_ReturnType Sd_ServerServiceSetState (

 uint16 SdServerServiceHandleId,

 Sd_ServerServiceSetStateType ServerServiceState

)

Service ID [hex] 0x07

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in)

SdServerServiceHandle
Id

ID to identify the Server Service Instance.

ServerServiceState
The state the Server Service Instance shall be set
to.

Parameters
(inout)

None

Parameters (out) None

Return value Std_ReturnType
E_OK: State accepted
E_NOT_OK: State not accepted

Description This API function is used by the BswM to set the Server Service Instance state.

Available via Sd.h

⌋()

[SWS_SD_00407]⌈
If development error detection is enabled and the Service Discovery module has not

been initialized using Sd_Init(), the Sd_ServerServiceSetState function

shall raise the development error code SD_E_UNINIT and the

Sd_ServerServiceSetState function shall return E_NOT_OK.

⌋()

[SWS_SD_00408]⌈
If the parameter ServerServiceState has an undefined value, the Service Discovery

module shall not store the requested mode and return E_NOT_OK.

In case development error detection is enabled, the Service Discovery module shall

additionally raise the development error code SD_E_INV_MODE.

⌋()

[SWS_SD_00607]⌈If the parameter SdServerServiceHandleId has an invalid

value, the Service Discovery Module shall not store the requested mode and return

 Specification of Service Discovery
AUTOSAR CP R20-11

108 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

E_NOT_OK. In case development error detection is enabled, the Service Discovery

module shall additionally raise the development error code SD_E_INV_ID.⌋ ()

 Specification of Service Discovery
AUTOSAR CP R20-11

109 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.3.4 Sd_ClientServiceSetState

[SWS_SD_00409]⌈

Service Name Sd_ClientServiceSetState

Syntax

Std_ReturnType Sd_ClientServiceSetState (

 uint16 ClientServiceHandleId,

 Sd_ClientServiceSetStateType ClientServiceState

)

Service ID [hex] 0x08

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in)
ClientServiceHandleId ID to identify the Client Service Instance.

ClientServiceState The state the Client Service Instance shall be set to.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType
E_OK: State accepted
E_NOT_OK: State not accepted

Description This API function is used by the BswM to set the Client Service Instance state.

Available via Sd.h

⌋()

[SWS_SD_00410]⌈
If development error detection is enabled and the Service Discovery module has not

been initialized using Sd_Init(), the Sd_ClientServiceSetState function

shall raise the development error code SD_E_UNINIT and the

Sd_ClientServiceSetState function shall return E_NOT_OK.

⌋()

[SWS_SD_00411]⌈
If the parameter ClientServiceState has an undefined value, the Service Discovery

module shall not store the requested mode and return E_NOT_OK.

In case development error detection is enabled, the Service Discovery module shall

additionally raise the development error code SD_E_INV_MODE.

⌋()

[SWS_SD_00608]⌈ If the parameter ClientServiceHandleId has an invalid

value, the Service Discovery module shall not store the requested mode and return

 Specification of Service Discovery
AUTOSAR CP R20-11

110 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

E_NOT_OK. In case development error detection is enabled, the Service Discovery

module shall additionally raise the development error code SD_E_INV_ID.⌋ ⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

111 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.3.5 Sd_ConsumedEventGroupSetState

[SWS_SD_00560]⌈

Service Name Sd_ConsumedEventGroupSetState

Syntax

Std_ReturnType Sd_ConsumedEventGroupSetState (

 uint16 SdConsumedEventGroupHandleId,

 Sd_ConsumedEventGroupSetStateType ConsumedEventGroupState

)

Service ID [hex] 0x09

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in)
SdConsumedEventGroupHandleId ID to identify the Consumed Eventgroup

ConsumedEventGroupState The state the EventGroup shall be set to.

Parameters
(inout)

None

Parameters (out) None

Return value Std_ReturnType
E_OK: State accepted
E_NOT_OK: State not accepted

Description
This API function is used by the BswM to set the requested state of the Event
GroupStatus.

Available via Sd.h

⌋()

[SWS_SD_00469]⌈
If development error detection is enabled and the Service Discovery module has not

been initialized using Sd_Init(), the Sd_ConsumedEventGroupSetState

function shall raise the development error code SD_E_UNINIT and the

Sd_ConsumedEventGroupSetState function shall return E_NOT_OK.

⌋()

[SWS_SD_00470]⌈
If ConsumedEventGroupSetState has an undefined value, the Service Discovery

module shall not store the requested mode and return E_NOT_OK.

In case development error detection is enabled, the Service Discovery module shall

additionally raise the development error code SD_E_INV_MODE.

⌋()

[SWS_SD_00609]⌈ If the parameter SdConsumedEventGroupHandleId has an

invalid value, the Service Discovery module shall not store the requested mode and

return E_NOT_OK. In case development error detection is enabled, the Service

 Specification of Service Discovery
AUTOSAR CP R20-11

112 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Discovery module shall additionally raise the development error code

SD_E_INV_ID.⌋ ⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

113 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.3.6 Sd_LocalIpAddrAssignmentChg

[SWS_SD_00412]⌈

Service Name Sd_LocalIpAddrAssignmentChg

Syntax

void Sd_LocalIpAddrAssignmentChg (

 SoAd_SoConIdType SoConId,

 TcpIp_IpAddrStateType State

)

Service ID
[hex]

0x05

Sync/Async Synchronous

Reentrancy Reentrant for different SoConIds. Non Reentrant for the same SoConId.

Parameters
(in)

SoConId
socket connection index specifying the socket connection where the IP
address assigment has changed.

State state of IP address assignment.

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
This function gets called by the SoAd if an IP address assignment related to a
socket connection changes (i.e. new address assigned or assigned address
becomes invalid).

Available via Sd.h

⌋()
[SWS_SD_00471]⌈
If development error detection is enabled and the Service Discovery module has not

been initialized using Sd_Init(), the Sd_LocalIpAddrAssignmentChg function

shall raise the development error code SD_E_UNINIT and the

Sd_LocalIpAddrAssignmentChg function shall return without further action.

⌋()

[SWS_SD_00472]⌈
If the parameter State has an undefined value, the Service Discovery module shall

not store the requested mode and return.
In case development error detection is enabled, the Service Discovery module shall

additionally raise the development error code SD_E_INV_MODE.

⌋()

[SWS_SD_00610] ⌈

 Specification of Service Discovery
AUTOSAR CP R20-11

114 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

If the parameter SoConId has an invalid value, the Service Discovery module shall

not store the requested mode and return. In case development error detection is
enabled, the Service Discovery module shall additionally raise the development error

code SD_E_INV_ID.

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

115 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.3.7 Sd_SoConModeChg

[SWS_SD_91003]⌈

Service Name Sd_SoConModeChg

Syntax

void Sd_SoConModeChg (

 SoAd_SoConIdType SoConId,

 SoAd_SoConModeType Mode

)

Service ID [hex] 0x43

Sync/Async Synchronous

Reentrancy Reentrant for different SoConIds. Non reentrant for the same SoConId.

Parameters (in)

SoCon
Id

socket connection index specifying the socket connection with the
mode change.

Mode new mode

Parameters
(inout)

None

Parameters (out) None

Return value None

Description
Notification about a SoAd socket connection state change, e.g. socket
connection gets online

Available via Sd.h

⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

116 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.3.8 Sd_ServiceGroupStart

[SWS_SD_91006]⌈

Service Name Sd_ServiceGroupStart

Syntax

void Sd_ServiceGroupStart (

 Sd_ServiceGroupIdType ServiceGroupId

)

Service ID
[hex]

0x44

Sync/Async Synchronous

Reentrancy
Reentrant for different SdServiceGroupS. Non reentrant for the same SdService
Group.

Parameters
(in)

ServiceGroupId Id of SdServiceGroup to be started

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Starts a preconfigured SdServiceGroup. For example, OfferService entries will be
sent out after the call of Sd_ServiceGroupStart() for all ServerServives of a Sd
ServiceGroup, which are not requested yet.

Available via Sd.h

⌋()

8.3.9 Sd_ServiceGroupStop

[SWS_SD_91007]⌈

Service
Name

Sd_ServiceGroupStop

Syntax

void Sd_ServiceGroupStop (

 Sd_ServiceGroupIdType ServiceGroupId

)

Service ID
[hex]

0x45

Sync/Async Synchronous

Reentrancy
Reentrant for different SdServiceGroupS. Non reentrant for the same SdService
Group.

 Specification of Service Discovery
AUTOSAR CP R20-11

117 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Parameters
(in)

ServiceGroupId Id of SdServiceGroup to be stopped

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Stops a preconfigured SdServiceGroup. For example, StopOfferService entries will
be sent out after the call of Sd_ServiceGroupStop() for all ServerServices of a Sd
ServiceGroup, which are not requested by another SdServiceGroup.

Available via Sd.h

⌋()

8.4 Call-back notifications

This is a list of functions provided for other modules.

8.4.1 Sd_RxIndication

[SWS_SD_00129]⌈

Service Name Sd_RxIndication

Syntax

void Sd_RxIndication (

 PduIdType RxPduId,

 const PduInfoType* PduInfoPtr

)

Service ID
[hex]

0x42

Sync/Async Synchronous

Reentrancy Reentrant for different PduIds. Non reentrant for the same PduId.

Parameters
(in)

RxPdu
Id

ID of the received PDU.

Pdu
InfoPtr

Contains the length (SduLength) of the received PDU, a pointer to a
buffer (SduDataPtr) containing the PDU, and the MetaData related to this
PDU.

Parameters
(inout)

None

 Specification of Service Discovery
AUTOSAR CP R20-11

118 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Parameters
(out)

None

Return value None

Description Indication of a received PDU from a lower layer communication interface module.

Available via Sd.h

⌋()

[SWS_SD_00473]⌈
If development error detection is enabled and the Service Discovery module has not

been initialized using Sd_Init(), the Sd_RxIndication function shall raise the

development error code SD_E_UNINIT and the Sd_RxIndication function shall

return without further action.
⌋()

[SWS_SD_00474]⌈
If RxPduId has an undefined value, the Service Discovery module shall discard the

message and return without further action.
In case development error detection is enabled, the Service Discovery module shall

additionally raise the development error code SD_E_INV_ID.
⌋()

[SWS_SD_00475]⌈
If development error detection is enabled: The function shall check parameter

PduInfoPtr for being a null pointer. In this case, the function shall raise the

development error SD_E_PARAM_POINTER and return without further action.

⌋()

8.5 Scheduled functions

The following functions are called directly by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-
reentrant.

8.5.1 Sd_MainFunction

[SWS_SD_00130]⌈

Service Name Sd_MainFunction

Syntax

void Sd_MainFunction (

 void

)

Service ID [hex] 0x06

Description --

Available via SchM_Sd.h

 Specification of Service Discovery
AUTOSAR CP R20-11

119 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

⌋()

[SWS_SD_00131]⌈
The Sd_MainFunction shall update all counters, timers, states and phases and
prozess the Rx and Tx data path.
⌋()

 Specification of Service Discovery
AUTOSAR CP R20-11

120 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

8.6 Expected Interfaces

In this chapter, all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_SD_00133]⌈

API Function
Header
File

Description

Dem_Set-
EventStatus

Dem.h

Called by SW-Cs or BSW modules to report monitor status information
to the Dem. BSW modules calling Dem_SetEventStatus can safely
ignore the return value. This API will be available only if ({Dem/Dem
ConfigSet/DemEventParameter/DemEventReportingType} ==
STANDARD_REPORTING)

SoAd_Disable-
Specific-
Routing

SoAd.h
Disables routing of a group of PDUs in the SoAd related to the Routing
Group specified by parameter id only on the socket connection identified
by SoConId.

SoAd_Enable-
Specific-
Routing

SoAd.h
Enables routing of a group of PDUs in the SoAd related to the Routing
Group specified by parameter id only on the socket connection identified
by SoConId.

SoAd_Get-
LocalAddr

SoAd.h
Retrieves the local address (IP address and port) actually used for the
SoAd socket connection specified by SoConId, the netmask and default
router

SoAd_Get-
PhysAddr

SoAd.h
Retrieves the physical source address of the EthIf controller used by the
SoAd socket connection specified by SoConId.

SoAd_Get-
RemoteAddr

SoAd.h
Retrieves the remote address (IP address and port) actually used for the
SoAd socket connection specified by SoConId

SoAd_GetSo-
ConMode

SoAd.h Returns current state of the socket connection specified by SoConId.

SoAd_If-
Specific-
RoutingGroup-
Transmit

SoAd.h
Triggers the transmission of all If-TxPDUs identified by the parameter id
on the socket connection specified by SoConId after requesting the data
from the related upper layer.

SoAd_If-
Transmit

SoAd.h Requests transmission of a PDU.

SoAd_-
Release-
RemoteAddr

SoAd.h
By this API service the remote address (IP address and port) of the
specified socket connection shall be released, i.e. set back to the
configured remote address setting.

SoAd_Set-
RemoteAddr

SoAd.h
By this API service the remote address (IP address and port) of the
specified socket connection shall be set.

 Specification of Service Discovery
AUTOSAR CP R20-11

121 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

⌋()

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional
functionality of the module.

[SWS_SD_00134]⌈

API Function
Header
File

Description

BswM_Sd_Client-
ServiceCurrent-
State

BswM_
Sd.h

Function called by Service Discovery to indicate current state of the
Client Service (available/down).

BswM_Sd_-
ConsumedEvent-
GroupCurrent-
State

BswM_
Sd.h

Function called by Service Discovery to indicate current status of the
Consumed Eventgroup (available/down).

BswM_Sd_Event-
HandlerCurrent-
State

BswM_
Sd.h

Function called by Service Discovery to indicate current status of the
EventHandler (requested/released).

Det_ReportError Det.h Service to report development errors.

SoAd_CloseSo-
Con

SoAd.h This service closes the socket connection specified by SoConId.

SoAd_Disable-
Routing

SoAd.h

Disables routing of a group of PDUs in the SoAd related to the
RoutingGroup specified by parameter id. Routing of PDUs can be
either forwarding of PDUs from the upper layer to a TCP or UDP
socket of the TCP/IP stack specified by a PduRoute or the other way
around specified by a SocketRoute.

SoAd_Enable-
Routing

SoAd.h

Enables routing of a group of PDUs in the SoAd related to the
RoutingGroup specified by parameter id. Routing of PDUs can be
either forwarding of PDUs from the upper layer to a TCP or UDP
socket of the TCP/IP stack specified by a PduRoute or the other way
around specified by a SocketRoute.

SoAd_GetSoCon-
Id

SoAd.h Returns socket connection index related to the specified TxPduId.

SoAd_IfRouting-
GroupTransmit

SoAd.h
Triggers the transmission of all If-TxPDUs identified by the parameter
id after requesting the data from the related upper layer.

SoAd_OpenSo-
Con

SoAd.h This service opens the socket connection specified by SoConId.

SoAd_ReleaseIp-
AddrAssignment

SoAd.h
By this API service the local IP address assignment used for the
socket connection specified by SoConId is released.

SoAd_RequestIp-
AddrAssignment

SoAd.h
By this API service the local IP address assignment which shall be
used for the socket connection specified by SoConId is initiated.

 Specification of Service Discovery
AUTOSAR CP R20-11

122 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SoAd_SetUnique-
RemoteAddr

SoAd.h

This API service shall either return the socket connection index of the
SoAdSocketConnectionGroup where the specified remote address
(IP address and port) is set or assign the remote address to an
unused socket connection from the same SoAdSocketConnection
Group.

⌋()

8.6.3 Configurable Interfaces

8.6.3.1 Sd_CapabilityRecordMatchCallout

[SWS_SD_91001]⌈

Service
Name

<SdCapabilityRecordMatchCallout>

Syntax

boolean <SdCapabilityRecordMatchCallout> (

 PduIdType pduID,

 uint8 type,

 uint16 serviceID,

 uint16 instanceID,

 uint8 majorVersion,

 uint32 minorVersion,

 const Sd_ConfigOptionStringType* receivedConfigOptionPtr

Array,

 const Sd_ConfigOptionStringType* configuredConfigOptionPtr

Array

)

Service ID
[hex]

0x10

Sync/Async Synchronous

Reentrancy Reentrant for different PduIds. Non reentrant for the same PduId.

Parameters
(in)

pduID
ID of the received I-PDU (used to to distinguish between
different SD instances)

type
Content of the Type field of the received entry (see section
7.3.8)

serviceID
Content of the Service ID field of the received entry (see section
7.3.8)

instanceID
Content of the Instance ID field of the received entry (see
section 7.3.8)

majorVersion
Content of the Major Version field of the received entry (see
section 7.3.8)

minorVersion
Content of the Minor Version field of the received entry (see
section 7.3.8)

receivedConfig
OptionPtrArray

NULL_PTR terminated array of pointers to zero-terminated
configuration strings received in the incoming entry, i.e. received
SD message (see Figure 6 - Configuration Option)

 Specification of Service Discovery
AUTOSAR CP R20-11

123 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

configuredConfig
OptionPtrArray

NULL_PTR terminated array of pointers to zero-terminated
configuration strings configured in the local SD configuration
(see Figure 6 - Configuration Option)

Parameters
(inout)

None

Parameters
(out)

None

Return value boolean

TRUE: The received configuration options match the configured
ones.
FALSE: The received configuration options do not match the
configured ones.

Description
This callout is invoked to determine whether the configuration options contained in a
received SD message match the ones configured in the local SD configuration (i.e.,
SdServerCapabilityRecord or SdClientCapabilityRecord).

Available via Sd_Externals.h

⌋()

This callout must be configured in the SdCapabilityRecordMatchCallout container.
The name of the callout functions is given by the

SdCapabilityRecordMatchCalloutName configuration element.

 Specification of Service Discovery
AUTOSAR CP R20-11

124 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

9 Sequence diagrams

9.1 CLIENT / SERVER: Sd_RxIndication

Figure 9.1: Sequence CLIENT / SERVER: Sd_RxIndication

 Specification of Service Discovery
AUTOSAR CP R20-11

125 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

9.2 SERVER: Response Behavior

«module»

Sd

«module»

SoAd

opt if entry is in Main Phase and entry is available

opt if eventgroup entry is available

alt over received entries

[entry==FindService]

[entry==SubscribeEventgroup]

[entry==StopSubscribeEventgroup]

[else]

opt if client is subscribed

buildOfferServiceEntry()

addToSendQueue(dest, entry, options,

sendTime="now")

addToSendQueue(dest, entry, options,

sendTime="now"+delay)

removeClientFromFanOut()

determineRequestResponseDelay(SdServerTimerRequestResponseMinDelay,

SdServerTimerRequestResponseMaxDelay)

addClientToFanOut()

disassembleIncomingMessage(): entries, options

buildSubscribeAckEntry()

Figure 9.2: Sequence: SERVER: Response Behavior

 Specification of Service Discovery
AUTOSAR CP R20-11

126 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

9.3 CLIENT: Response Behavior

 Specification of Service Discovery
AUTOSAR CP R20-11

127 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

«module»

Sd

«module»

SoAd

opt Service contains TCP and SoCon not set up yet

opt Service contains UDP and SoCon not set up yet

loop over all active Eventgroups of this service instance

loop over received entries

[entry==OfferService]

[entry==StopOfferService]

[entry==SubscribeEventgroupAck]

[entry==SubscribeEventgroupNack]

[else]

All Subscribe Eventgroup entries to a

single client shall be send in a SD

message.

Generator can determine SoConId by

SdConsumedEventGroupMulticastActivationRef

opt Service contains Multicast and SoCon not set up yet

SoAd_OpenSoCon(SdClientServiceTcpRef)

SoAd_EnableSpecificRouting(SdConsumedEventGroupMulticastActivationRef, SoConId)

SoAd_EnableSpecificRouting(SdClientServiceActivationRef, TcpSoConId)

SoAd_SetUniqueRemoteAddr(SdClientServiceTcpRef, IpAddrPtr, TcpSoConId)

SoAd_EnableSpecificRouting(SdClientServiceActivationRef, TcpSoConId)

determineRequestResponseDelay(SdServerTimerRequestResponseMinDelay,

SdServerTimerRequestResponseMaxDelay)

buildSubscribeEventgroupEntry()

disassembleIncomingMessage(entries, options)

updateStateOfServiceAndRelatedEventgroups()

DisableRoutingForServiceAndEventgroups

()

updateState()

SoAd_SetUniqueRemoteAddr(SdClientServiceUdpRef, IpAddrPtr, UdpSoConId)

SoAd_RequestIpAddrAssignment(SoConId)

cleanUpSoCons()

DEM_reportError()

addToSendQueue(dest, entry, options, sendTime="Now"+delay)

 Specification of Service Discovery
AUTOSAR CP R20-11

128 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Figure 9.3: Sequence CLIENT: Response Behavior

9.4 SERVER: buildOfferServiceEntry

«module»

Sd

«module»

SoAd

opt SdServerServiceUdpRef exists

opt SdServerServiceTcpRef exists

opt SdServerCapability and/or SdInstanceHostname exists

All options and entries used are filled out with static

parameters only; thus, they can be stored in rom.

SoAd_GetLocalAddr(Std_ReturnType, SoAd_SoConIdType,

TcpIp_SockAddrType**, uint8**, TcpIp_SockAddrType**)

buildOfferServiceEntry()

buildEndpointOptionUdp(LocalAddrPtr)

SoAd_GetLocalAddr(Std_ReturnType, SoAd_SoConIdType,

TcpIp_SockAddrType**, uint8**, TcpIp_SockAddrType**)

buildEndpointOptionTcp(LocalAddrPtr)

buildConfigurationOption()

Figure 9.4: Sequence SERVER: buildOfferServiceEntry

 Specification of Service Discovery
AUTOSAR CP R20-11

129 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

9.5 CLIENT: buildSubscribeEventgroupEntry

«module»

Sd

«module»

SoAd

opt SdConsumedEventGroupUdpActivationRef exists
UdpSoConId is determined by choosing the

SoConId from SoConGroup

SdClientServiceUdpRef that fits the Endpoint

opt SdConsumedEventGroupTcpActivationRef exists
TcpSoConId is determined by choosing the

SoConId from SoConGroup SdClientServiceTcpRef

that fits the Endpoint

opt SdClientCapability and/or SdInstanceHostname exists

opt Routing not active

opt Routing not active

SoAd_GetLocalAddr(TcpSoConId)

buildEndpointOptionUdp(LocalAddrPtr)

buildConfigurationOption()

SoAd_EnableSpecificRouting(SdConsumedEventGroupTcpActivationRef, TcpSoConId)

SoAd_EnableSpecificRouting(SdConsumedEventGroupUdpActivationRef, UdpSoConId)

buildEndpointOptionTcp(LocalAddrPtr)

buildSubscribeEventgroupEntry()

SoAd_GetLocalAddr(UdpSoConId)

Figure 9.5: Sequence CLIENT: buildSubscribeEventgroupEntry

 Specification of Service Discovery
AUTOSAR CP R20-11

130 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

9.6 SERVER: buildSubscribeEventgroupAckEntry

«module»

Sd

«module»

SoAd

opt SdEventHandlerMulticast exists

opt SdServerCapabilityRecord exists

Generate SoConId from SdEventTriggeringRef

and/or SdEventActivationRef of

SdEventHandlerMulticast

buildMulticastOption()

buildSubscribeEventgroupAckEntry()

SoAd_GetRemoteAddr(return, SoConId, IpAddrPtr)

buildConfigurationOption()

Figure 9.6: Sequence CLIENT: buildSubscribeEventgroupAckEntry

 Specification of Service Discovery
AUTOSAR CP R20-11

131 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

9.7 CLIENT / SERVER: TransmitSdMessage

«module»

Sd

«module»

SoAd

entries and options are taken from send queue

based on destination and sendTime

alt

[unicast entries]

[multicast entries]

unicastAddress from SoAd_GetRemoteAddr in

Sd_RxIndication

multicastSoConId generated based on

SdInstanceMulticastRxPdu

SoAd_SetRemoteAddr(destination)

combineEntriesAndOptionsToSdMessage(entries, options)

SoAd_GetLocalAddr(multicastSoConId): destination

SoAd_IfTransmit(Std_ReturnType, PduIdType, const PduInfoType*)

SoAd_SetRemoteAddr(unicastAddress)

Figure 9.7: Sequence CLIENT / SERVER: TransmitSdMessage

 Specification of Service Discovery
AUTOSAR CP R20-11

132 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

9.8 SERVER: AddClientToFanOut

«module»

Sd

«module»

SoAd

«module»

BswM

SWC (Server)

opt if no SoConId is known for client and eventgroup (first for TCP, then for UDP)

loop Find SoConId in SoCons

SoCon list generated based on

SdEventActivationRef and/or

SdEventTriggeringRef

alt if SoCon not found

[TCP]

[UDP]

opt

[numOfSubs==0]
SD_EVENTGROUP_REQUESTED_AND_AVAILABLE

RTE ModeSwitch

alt

[MulticastThreshhold==0 || numOfSubs<MulticastThreshhold]

[numOfSubs==MulticastThreshhold]

loop over all subscribed clients (new client needs only Activate)

SoConIds for all relevant SoCons

must be determined

SoAd_IfSpecificRoutingGroupTransmit(SdEventHandlerTcp->SdEventTriggeringRef, TcpSoConId)

rememberSoConId()

SoAd_SetUniqueRemoteAddr()

exit()

SoAd_GetRemoteAddr(Std_ReturnType, SoAd_SoConIdType, TcpIp_SockAddrType*)

BswM_Sd_EventHandlerCurrentState()

SoAd_IfSpecificRoutingGroupTransmit(SdEventHandlerUdp->SdEventTriggeringRef, UdpSoConId)

buildSubscribeNackEntry()

SoAd_EnableSpecificRouting(SdEventHandlerUdp->SdEventActivationRef, SoConId)

numOfSubs++()

SoAd_EnableSpecificRouting(SdEventHandlerMulticast->SdEventActivationRef, SdEventHandlerMulticast->SdMulticastEventSoConRef)

addToSendQueue()

checkIfAddrMatches()

SoAd_EnableSpecificRouting(SdEventHandlerTcp->SdEventActivationRef, TcpSoConId)

SoAd_DisableSpecificRouting(SdEventHandlerUdp-->SdEventActivationRef, SoConId)

Figure 9.8: Sequence SERVER: AddClientToFanOut

 Specification of Service Discovery
AUTOSAR CP R20-11

133 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

9.9 SERVER: Start

SWC (Server) «module»

BswM

«module»

Sd

«module»

SoAd

Server == DOWN

Server == AVAILABLE

SD_SERVER_SERVICE_DOWN

RTE Mode Request

opt Activate Routing Groups

opt LocalIPAddrAssignment==TCPIP_IPADDR_STATE_ASSIGNED

seq DOWN

SD_SERVER_SERVICE_AVAILABLE

seq Initial Wait Phase

Don't answer "Find entry" for this service instance in Initial Wait Phase

critical : Send combined with other entries and options

opt SdServerTimerInitialOfferRepetitionMax > 0

seq Repetition Phase

loop e.g. 30ms, 60ms, 120ms

critical : Send combined with other entries and options

Timings for Repetition Phase:

SdServerServiceTimerRef -> SdServerTimer:

* SdServerTimerInitialOfferRepetitionBaseDelay

* SdServerTimerInitialOfferRepetitionMax

seq Main Phase

loop Send cyclic Offer Messages
Timings for Main Phase "Send cyclic Offers":

SdServerServiceTimerRef -> SdServerTimer:

* SdServerTimerOfferCyclicDelay

addToSendQueue(dest, entry, options, sendTime)

buildOptionsAndEntries()

SoAd_OpenSoCon(SoConId)

addToSendQueue(dest, entry, options, sendTime)

update

State()

addToSendQueue(dest, entry,

options, sendTime)

SoAd_EnableRouting(SdServerServiceActivationRef)

"Available"()

buildOfferServiceEntry()

check

HandleID()

startTimer(initialWait)

calculateInitialWaitTimer(SdServerTimerInitialOfferDelayMin,

SdServerTimerInitialOfferDelayMax)

Sd_ServerServiceSetState(SdServerServiceHandleId,

SD_SERVER_SERVICE_AVAILABLE)

buildOfferServiceEntryAndOptions()

initialWaitTimerExpired()

Figure 9.9: Sequence Sconfiguration variantsERVER: Start

9.10 CLIENT: Start

 Specification of Service Discovery
AUTOSAR CP R20-11

134 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Figure 9.10: Sequence CLIENT: Start

 Specification of Service Discovery
AUTOSAR CP R20-11

135 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

[SWS_SD_00135]⌈
The Service Discovery module shall support tool based configuration.
⌋()

[SWS_SD_00136]⌈
The configuration tool shall check the consistency of the configuration parameters at
system configuration time.
⌋()

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.2 Containers and configuration parameters

The configuration parameters as defined in this chapter are used to create a data
model for an AUTOSAR tool chain. The realization in the code is implementation
specific.

10.2.1 Sd

SWS Item ECUC_SD_00001 :

Module Name Sd

Module Description Configuration of the Service Discovery module.

Post-Build Variant Support true

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

SdConfig 1
This container contains the configuration parameters and sub
containers of the AUTOSAR Service Discovery module.

SdGeneral 1
This container lists the general configuration parameters for
the Service Discovery module.

 Specification of Service Discovery
AUTOSAR CP R20-11

136 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Sd: EcucModuleDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdGeneral:

EcucParamConfContainerDef

SdConfig:

EcucParamConfContainerDef

SdServerService:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientService:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdInstance:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdInstanceHostname:

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimer:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *
SdClientTimer:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdInstanceMulticastRxPdu:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdInstanceTxPdu:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdInstanceUnicastRxPdu:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

Pdu:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdRxPduId:

EcucIntegerParamDef

min = 0

max = 65535

SdRxPduRef:

EcucReferenceDef

SdTxPduRef:

EcucReferenceDef

SdRxPduId:

EcucIntegerParamDef

min = 0

max = 65535

SdRxPduRef:

EcucReferenceDef

SdInstanceDemEventParameterRefs:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SD_E_MALFORMED_MSG:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

SD_E_OUT_OF_RES:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

DemEventParameter:

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

DemEventId:

EcucIntegerParamDef

max = 65535

min = 1

symbolicNameValue = true

SD_E_SUBSCR_NACK_RECV:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

SdInstanceLocalAdressCheckLength:

EcucIntegerParamDef

min = 0

max = 128

lowerMultiplicity = 0

upperMultiplicity = 1

SdServiceGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

+destination

+reference

+parameter

+destination

+subContainer

+parameter

+reference

+reference

+parameter

+subContainer

+destination

+subContainer

+subContainer

+subContainer

+reference

+subContainer

+destination

+reference

+reference

+parameter

+subContainer

+destination

+container

+subContainer

+destination

+subContainer

+subContainer

+container

+parameter

 Specification of Service Discovery
AUTOSAR CP R20-11

137 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.2 SdGeneral

SWS Item ECUC_SD_00002 :

Container Name SdGeneral

Parent Container Sd

Description
This container lists the general configuration parameters for the Service
Discovery module.

Configuration Parameters

SWS Item ECUC_SD_00006 :

Name

SdDevErrorDetect
Parent Container SdGeneral

Description Switches the development error detection and notification on or off.

 true: detection and notification is enabled.

 false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00008 :

Name

SdMainFunctionCycleTime
Parent Container SdGeneral

Description This parameter defines the cycle time in seconds of the periodic calling of
Sd main function.

Multiplicity 1

Type EcucFloatParamDef

Range]0 .. INF[

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00139 :

Name

SdSetRemAddrOfClientRxMulticastSoCon
Parent Container SdGeneral

Description If SdSetRemAddrOfClientRxMulticastSoCon is set to TRUE, the Service
Discovery module shall choose an multicast socket connection which
match to the received Endpoint option of the corresponding OfferService. If
no particular socket connection exist, then an unused socket connection
with its remote address set to wildcard shall be used and the remote
address shall be updated accordingly. If
SdSetRemAddrOfClientRxMulticastSoCon is set to FALSE, the Service
Discovery shall choose an unused socket connection with its remote
address set to wildcard and skip to update the remote address, i.e. the

 Specification of Service Discovery
AUTOSAR CP R20-11

138 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

wildcard for the remote address is kept.
Note: setting SdSetRemAddrOfClientRxMulticastSoCon to FALSE
supports the re-use of a multicast socket connection for multiple
ClientServices which are located on the same ECU and subscribed to
ServerServices which are located on differen ECUs. The configuration of
the ECU where the ClientServices are located, could be simplified by only
configuring one socket connection within the multicast socket connection
group.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: If SdSetRemAddrOfClientRxMulticastSoCon is set to FALSE,
then all affected Socket Connections shall set
SoAdSocketMsgAcceptanceFilterEnabled to FALSE. Please note, a socket
connection with SoAdSocketMsgAcceptanceFilterEnabled set to FALSE,
accept all received events without checking the remote source address.

SWS Item ECUC_SD_00131 :

Name

SdSubscribeEventgroupRetryEnable
Parent Container SdGeneral

Description Switch to enable or disable the retry functionality to subscribe to
Eventgroups of ServerServices with TTL set to 0xFFFFFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00007 :

Name

SdVersionInfoApi
Parent Container SdGeneral

Description Enables and disables the version info API.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

139 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SdGeneral:

EcucParamConfContainerDef

SdDevErrorDetect:

EcucBooleanParamDef

defaultValue = false

SdVersionInfoApi:

EcucBooleanParamDef

defaultValue = false

SdMainFunctionCycleTime:

EcucFloatParamDef

min = 0

max = INF

SdSetRemAddrOfClientRxMulticastSoCon:

EcucBooleanParamDef

defaultValue = true

SdSubscribeEventgroupRetryEnable:

EcucBooleanParamDef

defaultValue = false

+parameter

+parameter

+parameter

+parameter

+parameter

10.2.3 SdConfig

SWS Item ECUC_SD_00003 :

Container Name SdConfig

Parent Container Sd

Description
This container contains the configuration parameters and sub containers of
the AUTOSAR Service Discovery module.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

SdCapabilityRecordMatchCallou
t

0..*

Callout that is invoked by the Sd implementation to
determine whether the configuration options contained in
the entries of a received SD message match the capability
record elements configured in SdServerCapabilityRecord
or SdClientCapabilityRecord.

SdInstance 0..*
This container represents an instance of the SD; i.e. the
SD configuration for a certain link.

SdServiceGroup 0..*
This container represents a group of ClientServices and
ServerServices, respectively.

 Specification of Service Discovery
AUTOSAR CP R20-11

140 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.4 SdCapabilityRecordMatchCallout

SWS Item ECUC_SD_00124 :

Container Name SdCapabilityRecordMatchCallout

Parent Container SdConfig

Description

Callout that is invoked by the Sd implementation to determine whether the
configuration options contained in the entries of a received SD message
match the capability record elements configured in
SdServerCapabilityRecord or SdClientCapabilityRecord.

Post-Build Variant
Multiplicity

false

Configuration Parameters

SWS Item ECUC_SD_00125 :

Name

SdCapabilityRecordMatchCalloutName
Parent Container SdCapabilityRecordMatchCallout

Description Function name (i.e., C-identifier) of the SdCapabilityRecordMatchCallout.

Multiplicity 1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.5 SdInstance

SWS Item ECUC_SD_00084 :

Container Name SdInstance

Parent Container SdConfig

Description
This container represents an instance of the SD; i.e. the SD configuration
for a certain link.

Configuration Parameters

SWS Item ECUC_SD_00012 :

Name

SdInstanceHostname
Parent Container SdInstance

Description Configuration parameter to specify the Hostname.

 Specification of Service Discovery
AUTOSAR CP R20-11

141 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00128 :

Name

SdInstanceLocalAdressCheckLength
Parent Container SdInstance

Description This item describes on how many bits of the addresses shall be compared
to determine, if a remote address is acceptable to be used.
This shall support IPv4 (0..32) and IPv6 (0..128). If this item is not present,
the security checks use the configured netmask instead.
"0" meaning not to check at all. For example "8" means that the first 8 bits
of a remote address must be equal to the local address to be considered
acceptable.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 128

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

Included Containers

Container Name Multiplicity Scope / Dependency

SdClientService 0..*
This container specifies all parameters used by Client
services.

SdClientTimer 0..*
This container specifies all timers used by the Service
Discovery module for Client Services.

SdInstanceDemEventParameterRef
s

0..1

Container for the references to DemEventParameter
elements which shall be invoked using the API
Dem_SetEventStatus in case the corresponding error
occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId symbolic value.
The standardized errors are provided in this container
and can be extended by vendor-specific error
references.

SdInstanceMulticastRxPdu 1 This container specifies the received PDU.

 Specification of Service Discovery
AUTOSAR CP R20-11

142 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SdInstanceTxPdu 1 This container specifies the transmitted PDU.

SdInstanceUnicastRxPdu 1 This container specifies the received PDU.

SdServerService 0..*
This container specifies all parameters used by Server
services.

SdServerTimer 0..*
This container specifies all timers used by the Service
Discovery module for Server Services.

10.2.6 SdServiceGroup

SWS Item ECUC_SD_00134 :

Container Name SdServiceGroup

Parent Container SdConfig

Description
Contains the configuration parameters of the AUTOSAR SD module's
SdServiceGroupS.

Post-Build Variant
Multiplicity

true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

SWS Item ECUC_SD_00135 :

Name

SdServiceGroupHandleId
Parent Container SdServiceGroup

Description The numerical value used as the ID of this SdServiceGroup. The
SdServiceHandleId is required by the API calls to start and stop
SdServiceGroupS.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.2.7 SdClientTimer

SWS Item ECUC_SD_00043 :

Container Name SdClientTimer

Parent Container SdInstance

Description
This container specifies all timers used by the Service Discovery module
for Client Services.

Configuration Parameters

SWS Item ECUC_SD_00063 :

Name

SdClientTimerInitialFindDelayMax
Parent Container SdClientTimer

 Specification of Service Discovery
AUTOSAR CP R20-11

143 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Description Max value in [s] to delay randomly the transmission of a find message.
This parameter is mandatory for ClientService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00044 :

Name

SdClientTimerInitialFindDelayMin
Parent Container SdClientTimer

Description Min value in [s] to delay randomly the transmission of a find message. This
parameter is mandatory for ClientService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00047 :

Name

SdClientTimerInitialFindRepetitionsBaseDelay
Parent Container SdClientTimer

Description The base delay in [s] for find repetitions. Successive finds have an
exponential back off delay (1x base delay, 2x base delay, 4x base delay,
...). This parameter is mandatory for ClientService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

 Specification of Service Discovery
AUTOSAR CP R20-11

144 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00046 :

Name

SdClientTimerInitialFindRepetitionsMax
Parent Container SdClientTimer

Description Configuration for the maximum number of find repetitions. This parameter
is mandatory for ClientService.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 10

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00036 :

Name

SdClientTimerRequestResponseMaxDelay
Parent Container SdClientTimer

Description Maximum allowable response delay to entries received by multicast in
seconds. This parameter is mandatory for ConsumedEventGroups.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00064 :

Name

SdClientTimerRequestResponseMinDelay
Parent Container SdClientTimer

Description Minimum allowable response delay to the find message in seconds. This
parameter is mandatory for ConsumedEventGroups.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

 Specification of Service Discovery
AUTOSAR CP R20-11

145 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00075 :

Name

SdClientTimerTTL
Parent Container SdClientTimer

Description Time to live for find and subscribe messages.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 16777215

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00133 :

Name

SdSubscribeEventgroupRetryDelay
Parent Container SdClientTimer

Description Time in seconds when a subscription to an event group shall be
retriggered, if no SubscribeEventGroupAck or SubscribeEventGroupNack
was received.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 50]

Default value 0.01

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: SdSubscribeEventgroupRetryDelay is only applicable if
SdSubscribeEventgroupRetryEnable is set to TRUE and
SdSubscribeEventgroupRetryMax > 0.

SWS Item ECUC_SD_00132 :

Name

SdSubscribeEventgroupRetryMax
Parent Container SdClientTimer

Description Maximum count of retry a subscription, if a subscription to an event group
is not acknowledged by SubscribeEventGroupAck or
SubscribeEventGroupNack. 0x0=no retry, 0xFF=retry forever (as long as
the event group is requested)

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Default value 0

Post-Build Variant true

 Specification of Service Discovery
AUTOSAR CP R20-11

146 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Multiplicity

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: SdSubscribeEventgroupRetryMax is only applicable if
SdSubscribeEventgroupRetryEnable is set to TRUE

No Included Containers

SdSubscribeEventgroupRetryMax:

EcucIntegerParamDef

min = 0

max = 255

defaultValue = 0

lowerMultiplicity = 0

upperMultiplicity = 1

SdSubscribeEventgroupRetryDelay:

EcucFloatParamDef

min = 0.001

max = 50.0

defaultValue = 0.010

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientTimer:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientTimerInitialFindDelayMin:

EcucFloatParamDef

min = 0

lowerMultiplicity = 0

upperMultiplicity = 1 SdClientTimerInitialFindDelayMax:

EcucFloatParamDef

min = 0

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientTimerInitialFindRepetitionsMax:

EcucIntegerParamDef

min = 0

max = 10

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientTimerInitialFindRepetitionsBaseDelay:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientTimerTTL: EcucIntegerParamDef

min = 1

max = 16777215

SdClientTimerRequestResponseMinDelay:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1SdClientTimerRequestResponseMaxDelay:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

 Specification of Service Discovery
AUTOSAR CP R20-11

147 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.8 SdServerTimer

SWS Item ECUC_SD_00035 :

Container Name SdServerTimer

Parent Container SdInstance

Description
This container specifies all timers used by the Service Discovery module
for Server Services.

Configuration Parameters

SWS Item ECUC_SD_00039 :

Name

SdServerTimerInitialOfferDelayMax
Parent Container SdServerTimer

Description Max value in [s] to delay randomly the first offer. This parameter is
mandatory for ServerService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00038 :

Name

SdServerTimerInitialOfferDelayMin
Parent Container SdServerTimer

Description Min value in [s] to delay randomly the first offer. This parameter is
mandatory for ServerService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00041 :

Name

SdServerTimerInitialOfferRepetitionBaseDelay
Parent Container SdServerTimer

Description The base delay in [s] for offer repetitions. Successive offers have an
exponential back off delay (1x base delay, 2x base delay, 4x base delay,
...). This parameter is mandatory for ServerService.

Multiplicity 0..1

 Specification of Service Discovery
AUTOSAR CP R20-11

148 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00040 :

Name

SdServerTimerInitialOfferRepetitionsMax
Parent Container SdServerTimer

Description Configure the maximum amount of offer repetition. This parameter is
mandatory for ServerService.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 10

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00076 :

Name

SdServerTimerOfferCyclicDelay
Parent Container SdServerTimer

Description Interval between cyclic offers in the main phase. This parameter is
mandatory for ServerService.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00114 :

Name

SdServerTimerRequestResponseMaxDelay

 Specification of Service Discovery
AUTOSAR CP R20-11

149 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Parent Container SdServerTimer

Description Maximum allowable response delay to entries received by multicast in
seconds.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00115 :

Name

SdServerTimerRequestResponseMinDelay
Parent Container SdServerTimer

Description Minimum allowable response delay to entries received by multicast in
seconds.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00037 :

Name

SdServerTimerTTL
Parent Container SdServerTimer

Description Time to live for offer service.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 16777215

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

150 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SdServerTimer:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerTimerRequestResponseMinDelay:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 1

upperMultiplicity = 1

SdServerTimerTTL: EcucIntegerParamDef

min = 1

max = 16777215

SdServerTimerInitialOfferDelayMin:

EcucFloatParamDef

min = 0

lowerMultiplicity = 0

upperMultiplicity = 1 SdServerTimerInitialOfferDelayMax:

EcucFloatParamDef

min = 0

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimerInitialOfferRepetitionsMax:

EcucIntegerParamDef

min = 0

max = 10

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimerInitialOfferRepetitionBaseDelay:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimerOfferCyclicDelay:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimerRequestResponseMaxDelay:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 1

upperMultiplicity = 1

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

10.2.9 SdInstanceTxPdu

SWS Item ECUC_SD_00030 :

Container Name SdInstanceTxPdu

Parent Container SdInstance

Description This container specifies the transmitted PDU.

Configuration Parameters

SWS Item ECUC_SD_00109 :

Name

SdTxPduRef
Parent Container SdInstanceTxPdu

Description Reference to the "global" Pdu structure to allow harmonization of handle
IDs in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

151 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.10 SdInstanceMulticastRxPdu

SWS Item ECUC_SD_00081 :

Container Name SdInstanceMulticastRxPdu

Parent Container SdInstance

Description This container specifies the received PDU.

Configuration Parameters

SWS Item ECUC_SD_00028 :

Name

SdRxPduId
Parent Container SdInstanceMulticastRxPdu

Description ID of the PDU that will be received via the API Sd_SoAdIfRxIndication().

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00029 :

Name

SdRxPduRef
Parent Container SdInstanceMulticastRxPdu

Description Reference to the "global" Pdu structure to allow harmonization of handle
IDs in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

152 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.11 SdInstanceUnicastRxPdu

SWS Item ECUC_SD_00027 :

Container Name SdInstanceUnicastRxPdu

Parent Container SdInstance

Description This container specifies the received PDU.

Configuration Parameters

SWS Item ECUC_SD_00082 :

Name

SdRxPduId
Parent Container SdInstanceUnicastRxPdu

Description ID of the PDU that will be received via the API Sd_SoAdIfRxIndication().

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00083 :

Name

SdRxPduRef
Parent Container SdInstanceUnicastRxPdu

Description Reference to the "global" Pdu structure to allow harmonization of handle
IDs in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

153 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.12 SdServerService

SWS Item ECUC_SD_00004 :

Container Name SdServerService

Parent Container SdInstance

Description This container specifies all parameters used by Server services.

Configuration Parameters

SWS Item ECUC_SD_00138 :

Name

SdServerServiceAutoAvailable
Parent Container SdServerService

Description If existing and set to true, this Service will be set to "Available" on start.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: SdServerServiceAutoAvailable could only be set to true, if
the SdServerService is NOT referencing a SdServiceGroup

SWS Item ECUC_SD_00110 :

Name

SdServerServiceHandleId
Parent Container SdServerService

Description The HandleId by which the BswM can identify this Server Service Instance.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00009 :

Name

SdServerServiceId
Parent Container SdServerService

Description Id to identify the service. This is unique for the service interface.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65534

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00011 :

Name

SdServerServiceInstanceId

 Specification of Service Discovery
AUTOSAR CP R20-11

154 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Parent Container SdServerService

Description Configuration parameter to specify Instance Id of the Service implemented
by the Server Service.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65534

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00129 :

Name

SdServerServiceLoadBalancingPriority
Parent Container SdServerService

Description Defines the value to be used for load balancing priority in the service offer.
Lower value means higher priority.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00130 :

Name

SdServerServiceLoadBalancingWeight
Parent Container SdServerService

Description Defines the value to be used for load balancing weight in the service offer.
Higher value means higher probability to be chosen.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00068 :

Name

SdServerServiceMajorVersion
Parent Container SdServerService

Description Major version number of the Service as used in SD Entries.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 254

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

 Specification of Service Discovery
AUTOSAR CP R20-11

155 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SWS Item ECUC_SD_00069 :

Name

SdServerServiceMinorVersion
Parent Container SdServerService

Description Minor version number of the Service as used e.g. in Offer Service entries.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967294

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00126 :

Name

SdServerCapabilityRecordMatchCalloutRef
Parent Container SdServerService

Description Reference to a SdCapabilityRecordMatchCallout, The referenced
SdCapabilityRecordMatchCallout is invoked to determine whether the
configuration options contained in the entries of a received SD message
match the server's configured SdServerCapabilityRecord elements.

Multiplicity 0..1

Type Reference to [SdCapabilityRecordMatchCallout]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00088 :

Name

SdServerServiceTcpRef
Parent Container SdServerService

Description Reference to SoAdSocketConnectionGroup used for methods.
This is used to access the local IP address and port for building the
endpoint option for offers of this service.

Multiplicity 0..1

Type Reference to [SoAdSocketConnectionGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00086 :

Name

SdServerServiceTimerRef

 Specification of Service Discovery
AUTOSAR CP R20-11

156 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Parent Container SdServerService

Description The reference of the SdServerTimer container for this service.

Multiplicity 1

Type Reference to [SdServerTimer]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00089 :

Name

SdServerServiceUdpRef
Parent Container SdServerService

Description Reference to SoAdSocketConnectionGroup used for methods.
This is used to access the local IP address and port for building the
endpoint option for offers of this service.

Multiplicity 0..1

Type Reference to [SoAdSocketConnectionGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00136 :

Name

SdServiceGroupRef
Parent Container SdServerService

Description Reference to the SdServiceGroupS this SdServerService belongs to.

Multiplicity 0..*

Type Reference to [SdServiceGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

SdEventHandler 0..*
Container Element for representing an EventGroup as part of
the Service Instance.

SdProvidedMethods 0..1
Container element for representing the needed elements of the
data path for the methods provided by the service.

SdServerCapabilityRecord 0..*

Sd uses capability records to store arbitrary name/value pairs
conveying additional information about the named service.
The following use cases are supported:
1) Key present, with no value (e.g. "passreq" -- password

 Specification of Service Discovery
AUTOSAR CP R20-11

157 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

required for this service)

2) Key present, with empty value (e.g. "PlugIns=" server
supports plugins, but none are presently installed)

3) Key present, with non-empty value (e.g.
"PlugIns=JPEG,MPEG2,MPEG4")

SdServiceGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerService:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerServiceId:

EcucIntegerParamDef

min = 0

max = 65534

SdServerServiceInstanceId:

EcucIntegerParamDef

min = 0

max = 65534

SdServerCapabilityRecord:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerCapabilityRecordKey:

EcucStringParamDef

SdServerCapabilityRecordValue:

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimer:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerServiceMajorVersion:

EcucIntegerParamDef

min = 0

max = 254 SdServerServiceMinorVersion:

EcucIntegerParamDef

min = 0

max = 4294967294

SdServerServiceHandleId:

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdServerServiceTimerRef:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdEventHandler:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerServiceAutoAvailable:

EcucBooleanParamDef

defaultValue = false

lowerMultiplicity = 1

upperMultiplicity = 1

SdServerServiceUdpRef: EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerServiceTcpRef: EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SoAdSocketConnectionGroup:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

SoAdRoutingGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerServiceActivationRef:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

requiresSymbolicNameValue = true

SdProvidedMethods:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SoAdRoutingGroupId:

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdServerCapabilityRecordMatchCalloutRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdCapabilityRecordMatchCallout:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerServiceLoadBalancingPriority:

EcucIntegerParamDef

min = 0

max = 65535

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerServiceLoadBalancingWeight:

EcucIntegerParamDef

min = 0

max = 65535

lowerMultiplicity = 0

upperMultiplicity = 1

SdServiceGroupRef: EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

+parameter

+destination

+reference +destination

+parameter

+destination+reference

+reference

+parameter

+subContainer

+reference

+parameter

+reference
+destination

+parameter

+parameter

+parameter

+destination

+parameter

+subContainer

+subContainer

+parameter

+reference

+parameter

+parameter

+destination

 Specification of Service Discovery
AUTOSAR CP R20-11

158 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.13 SdClientService

SWS Item ECUC_SD_00005 :

Container Name SdClientService

Parent Container SdInstance

Description This container specifies all parameters used by Client services.

Configuration Parameters

SWS Item ECUC_SD_00143 :

Name

SdClientServiceAutoRequire
Parent Container SdClientService

Description If existing and set to true, this Service will be set to "required" on start.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: SdClientServiceAutoRequire could only be set to true, if the
SdClientService is NOT referencing a SdServiceGroup

SWS Item ECUC_SD_00079 :

Name

SdClientServiceHandleId
Parent Container SdClientService

Description The HandleId by which the BswM can identify this Client Service Instance.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00020 :

Name

SdClientServiceId
Parent Container SdClientService

Description Id to identify the service. This is unique for the service interface.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65534

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00022 :

Name

SdClientServiceInstanceId

 Specification of Service Discovery
AUTOSAR CP R20-11

159 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Parent Container SdClientService

Description Configuration parameter to specify Instance Id of the service as used in SD
entries.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65534

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00070 :

Name

SdClientServiceMajorVersion
Parent Container SdClientService

Description Major version number of the Service as used in the SD entries.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 254

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00071 :

Name

SdClientServiceMinorVersion
Parent Container SdClientService

Description Minor version number of the Service as used in the SD Service Entries. If
configured to 0xffffffff (any), SD will accept all Minor Versions.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00140 :

Name

SdVersionDrivenFindBehavior
Parent Container SdClientService

Description Defined the possible acceptance kinds for required service instances.
Tags:
atp.Status=draft

Multiplicity 0..1

Type EcucEnumerationParamDef

Range EXACT_OR_ANY_MINOR_-
VERSION

Search for ANY or specific minor version
service instance and select either ALL
returned service instances (in case of ANY) or
exactly the specific minor version service
instances defined in
SdClientServiceMinorVersion.

 Specification of Service Discovery
AUTOSAR CP R20-11

160 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

MINIMUM_MINOR_VERSION Search for ANY minor version service instance
and select only those service instances which
have an equal or greater minor version than
given in SdClientServiceMinorVersion.

Default value EXACT_OR_ANY_MINOR_VERSION

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

true

Multiplicity
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME, VARIANT-POST-
BUILD

Post-build time --

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item ECUC_SD_00127 :

Name

SdClientCapabilityRecordMatchCalloutRef
Parent Container SdClientService

Description Reference to a SdCapabilityRecordMatchCallout, The referenced
SdCapabilityRecordMatchCallout is invoked to determine whether the
configuration options contained in the entries of a received SD message
match the client's configured SdClientCapabilityRecord elements.

Multiplicity 0..1

Type Reference to [SdCapabilityRecordMatchCallout]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00100 :

Name

SdClientServiceTcpRef
Parent Container SdClientService

Description Reference to the SoAdSocketConnection representing the data path (TCP)
for communication with methods.
This element is also used to set the remote address of the server and to
open the TCP connection.

Multiplicity 0..1

Type Reference to [SoAdSocketConnectionGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

 Specification of Service Discovery
AUTOSAR CP R20-11

161 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Scope / Dependency scope: local

SWS Item ECUC_SD_00103 :

Name

SdClientServiceTimerRef
Parent Container SdClientService

Description The reference of the SdClientTimer container for this service.

Multiplicity 1

Type Reference to [SdClientTimer]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00101 :

Name

SdClientServiceUdpRef
Parent Container SdClientService

Description Reference to the SoAdSocketConnection representing the data path
(UDP) for communication with methods.
This element is also used to set the remote address of the server.

Multiplicity 0..1

Type Reference to [SoAdSocketConnectionGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00137 :

Name

SdServiceGroupRef
Parent Container SdClientService

Description Reference to the SdServiceGroupS this SdClientService belongs to.

Multiplicity 0..*

Type Reference to [SdServiceGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

SdBlacklistedVersions 0..1
Collection of blacklisted versions.
Tags:
atp.Status=draft

SdClientCapabilityRecord 0..* Sd uses capability records to store arbitrary name/value pairs

 Specification of Service Discovery
AUTOSAR CP R20-11

162 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

conveying additional information about the named service.
The following use cases are supported:
1) Key present, with no value (e.g. "passreq" -- password
required for this service)

2) Key present, with empty value (e.g. "PlugIns=" server
supports plugins, but none are presently installed)

3) Key present, with non-empty value (e.g.
"PlugIns=JPEG,MPEG2,MPEG4")

SdConsumedEventGroup 0..*
This container specifies all parameters for consumed event
groups.

SdConsumedMethods 0..1
Container element for representing the data path for accessing
the server methods.

 Specification of Service Discovery
AUTOSAR CP R20-11

163 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SdClientService:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientServiceId:

EcucIntegerParamDef

min = 0

max = 65534

SdClientServiceInstanceId:

EcucIntegerParamDef

min = 0

max = 65534

SdClientTimer:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdConsumedEventGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientServiceMajorVersion:

EcucIntegerParamDef

min = 0

max = 254

SdClientServiceMinorVersion:

EcucIntegerParamDef

min = 0

max = 4294967295

SdClientCapabilityRecord:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientServiceCapabilityRecordKey:

EcucStringParamDef

SdClientServiceCapabilityRecordValue:

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientServiceHandleId:

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdClientServiceTimerRef:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdClientServiceAutoRequire:

EcucBooleanParamDef

defaultValue = false

lowerMultiplicity = 1

upperMultiplicity = 1

SdClientServiceUdpRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientServiceTcpRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientServiceActivationRef:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

requiresSymbolicNameValue = true

SdConsumedMethods:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SoAdRoutingGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SoAdRoutingGroupId:

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SoAdSocketConnectionGroup:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

SdClientCapabilityRecordMatchCalloutRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdCapabilityRecordMatchCallout:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdVersionDrivenFindBehavior:

EcucEnumerationParamDef

defaultValue = EXACT_OR_ANY_MINOR_VERSION

lowerMultiplicity = 0

upperMultiplicity = 1

MINIMUM_MINOR_VERSION:

EcucEnumerationLiteralDef

EXACT_OR_ANY_MINOR_VERSION:

EcucEnumerationLiteralDef

SdServiceGroupRef: EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

SdBlacklistedMinorVersions:

EcucIntegerParamDef

min = 0

max = 4294967295

lowerMultiplicity = 0

upperMultiplicity = *

SdBlacklistedVersions:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdServiceGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

+reference

+reference

+reference

+reference

+parameter

+parameter

+parameter

+parameter

+destination

+literal

+reference

+parameter

+destination

+subContainer

+parameter

+destination

+parameter

+subContainer

+parameter

+destination

+subContainer

+literal

+reference

+parameter

+destination

+parameter

+parameter

+subContainer

+destination

 Specification of Service Discovery
AUTOSAR CP R20-11

164 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.14 SdClientCapabilityRecord

SWS Item ECUC_SD_00072 :

Container Name SdClientCapabilityRecord

Parent Container SdClientService

Description

Sd uses capability records to store arbitrary name/value pairs conveying
additional information about the named service.

The following use cases are supported:
1) Key present, with no value (e.g. "passreq" -- password required for this
service)

2) Key present, with empty value (e.g. "PlugIns=" server supports plugins,
but none are presently installed)

3) Key present, with non-empty value (e.g.
"PlugIns=JPEG,MPEG2,MPEG4")

Configuration Parameters

SWS Item ECUC_SD_00073 :

Name

SdClientServiceCapabilityRecordKey
Parent Container SdClientCapabilityRecord

Description Defines a CapabilityRecord key.

Multiplicity 1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00074 :

Name

SdClientServiceCapabilityRecordValue
Parent Container SdClientCapabilityRecord

Description Defines the corresponding CapabilityRecord value.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

 Specification of Service Discovery
AUTOSAR CP R20-11

165 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Scope / Dependency scope: local

No Included Containers

10.2.15 SdConsumedEventGroup

SWS Item ECUC_SD_00056 :

Container Name SdConsumedEventGroup

Parent Container SdClientService

Description

A Service may have event groups which can be consumed. A service
consumer has to subscribe to the corresponding event-group. After the
subscription the event consumer takes the role of a server and the event
provider that of a client.

Configuration Parameters

SWS Item ECUC_SD_00144 :

Name

SdConsumedEventGroupAutoRequire
Parent Container SdConsumedEventGroup

Description If existing and set to true, this EventGroup will be set to "required" on start.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00116 :

Name

SdConsumedEventGroupHandleId
Parent Container SdConsumedEventGroup

Description The HandleId by which the BswM can identify this EventGroup.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00057 :

Name

SdConsumedEventGroupId
Parent Container SdConsumedEventGroup

Description The Eventgroup Id of this eventGroup as a unique identifier of the
eventgroup in this service. This identifier is used for EventGroup entries as
well.
Please note, that the Eventgroup ID 0x0000 is reserved.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65534

Default value --

 Specification of Service Discovery
AUTOSAR CP R20-11

166 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00106 :

Name

SdConsumedEventGroupMulticastActivationRef
Parent Container SdConsumedEventGroup

Description The reference of a Routing Group in order to activate and setup the Socket
Connection for Multicast Events of this EventGroup. The multicast address
from the received Multicast option is setup by
SoAd_RequestIpAddrAssignment.
The local address is the same as for the unicast events; thus, it was sent in
the UDP Endpoint option of the Subscribe EventGroup entry.

This is usually equal to the SdConsumedEventGroupUdpActivationRef.

Multiplicity 0..1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00119 :

Name

SdConsumedEventGroupMulticastGroupRef
Parent Container SdConsumedEventGroup

Description Reference to the SoAdSocketConnectionGroup representing the multicast
data path (UDP).

Multiplicity 0..*

Type Reference to [SoAdSocketConnectionGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00105 :

Name

SdConsumedEventGroupTcpActivationRef
Parent Container SdConsumedEventGroup

Description The reference of the Routing Group for activation of the data path for
receiving TCP events.
This element is also being used for getting the IP address and port number
for building the TCP endpoint option for the Subscribe EventGroup entry.

If no TCP methods are used in the service, this element is also being used

 Specification of Service Discovery
AUTOSAR CP R20-11

167 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

for setting the remote address (TCP Endpoint option referenced by the
Offer Service entry) and opening the TCP connection to the server before
sending the Subscribe EventGroup entry. If multiple EventGroups of the
same Service Instance are subscribed the TCP connection will be shared
and must be opened only once.

Multiplicity 0..1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00107 :

Name

SdConsumedEventGroupTimerRef
Parent Container SdConsumedEventGroup

Description The reference of the SdClientTimer container for this eventGroup.

Multiplicity 1

Type Reference to [SdClientTimer]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00104 :

Name

SdConsumedEventGroupUdpActivationRef
Parent Container SdConsumedEventGroup

Description The reference of the Routing Group for activation of the data path for
receiving UDP events.
This element is also being used for getting the IP address and port number
for building the UDP endpoint option for the Subscribe EventGroup entry.

If no UDP methods are used in the service, this element is also being used
for setting the remote address (UDP Endpoint option referenced by the
Offer Service entry). If multiple EventGroups of the same Service Instance
are subscribed the UDP Socket Connection will be shared and must be set
only once.

Multiplicity 0..1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

168 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SdClientTimer:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdConsumedEventGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdConsumedEventGroupId: EcucIntegerParamDef

min = 0

max = 65534

SdConsumedEventGroupHandleId:

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdConsumedEventGroupTimerRef: EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdConsumedEventGroupAutoRequire:

EcucBooleanParamDef

defaultValue = false

lowerMultiplicity = 1

upperMultiplicity = 1

SdConsumedEventGroupMulticastActivationRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

SdConsumedEventGroupUdpActivationRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

SdConsumedEventGroupTcpActivationRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

SoAdRoutingGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SoAdRoutingGroupId:

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SoAdSocketConnectionGroup:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

SdConsumedEventGroupMulticastGroupRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

+destination

+parameter

+destination

+reference

+reference

+parameter

+reference

+destination

+destination

+reference

+destination

+parameter

+reference

+parameter

10.2.16 SdConsumedMethods

SWS Item ECUC_SD_00099 :

Container Name SdConsumedMethods

Parent Container SdClientService

Description
Container element for representing the data path for accessing the server
methods.

Configuration Parameters

SWS Item ECUC_SD_00102 :

Name

SdClientServiceActivationRef
Parent Container SdConsumedMethods

Description Reference to a SoAdRoutingGroupRef to activate/deactivate the data path
for the methods.

Multiplicity 1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

169 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.17 SdEventHandler

SWS Item ECUC_SD_00055 :

Container Name SdEventHandler

Parent Container SdServerService

Description
Container Element for representing an EventGroup as part of the Service
Instance.

Configuration Parameters

SWS Item ECUC_SD_00061 :

Name

SdEventHandlerEventGroupId
Parent Container SdEventHandler

Description The EventGroup Id of this EventGroup as a unique identifier of the
EventGroup in this service. This identifier is used for EventGroup entries
as well.
Please note, that the Eventgroup ID 0x0000 is reserved.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65534

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00112 :

Name

SdEventHandlerHandleId
Parent Container SdEventHandler

Description The HandleId by which the BswM can identify this EventGroup.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_SD_00097 :

Name

SdEventHandlerMulticastThreshold
Parent Container SdEventHandler

Description Specifies the number of subscribed clients that trigger the Server to
change the transmission of events to Multicast.
If configured to 0 only unicast will be used.
If configured to 1 the first client will be already served by multicast.
If configured to 2 the first client will be served with unicast and as soon as
the second client arrives both will be served by multicast.

This does not influence the handling of initial events, which are served
using unicast only.

 Specification of Service Discovery
AUTOSAR CP R20-11

170 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00113 :

Name

SdEventHandlerTimerRef
Parent Container SdEventHandler

Description The reference of the SdServerTimer container for this EventGroup.

Multiplicity 1

Type Reference to [SdServerTimer]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

SdEventHandlerMulticast 0..1

The subcontainer including the Routing Group for Activation of
Events sent over Multicast.
The activation ref is also being used for identification of the
related Socket Connection in order to find the Multicast
Address used in the Multicast Option referenced by the
Subscribe EventGroup Ack entry.

SdEventHandlerTcp 0..1

The subcontainer including the Routing Groups for Activation
and Trigger Transmit for Events sent over TCP.
The activation ref (or triggering ref if no activation ref exists) is
also being used for identification of the related socket
connections in order to find the related client by iterating the
SdEventHandlerTcp elements (remote address statically
configured or automatically set by opening TCP connection
before subscription).

SdEventHandlerUdp 0..1

The subcontainer including the Routing Groups for Activation
and Trigger Transmit for Events sent over UDP.
The activation ref (or triggering ref if no activation ref exists) is
also being used for identification of the related socket
connections in order to set the remote address of the client or
find the related client by iterating the SdEventHandlerUdp
elements (remote address statically configured or
automatically set by method call before subscription).

 Specification of Service Discovery
AUTOSAR CP R20-11

171 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

SdServerTimer:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdEventHandler:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdEventHandlerEventGroupId:

EcucIntegerParamDef

min = 0

max = 65534

SdEventHandlerHandleId:

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdEventHandlerTimerRef:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdEventHandlerMulticast:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdEventHandlerUdp:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdEventHandlerTcp:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdEventHandlerMulticastThreshold:

EcucIntegerParamDef

min = 0

max = 65535

SoAdRoutingGroup:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdEventActivationRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

SdEventTriggeringRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

SoAdRoutingGroupId:

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdMulticastEventSoConRef:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

requiresSymbolicNameValue = true

SoAdSocketId:

EcucIntegerParamDef

symbolicNameValue = true

min = 0

max = 65535

SoAdSocketConnection:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

+reference

+reference

+reference

+destination

+subContainer

+destination

+destination

+parameter

+reference

+parameter

+reference

+parameter

+destination

+parameter

+reference

+subContainer

+parameter

+reference

+subContainer

 Specification of Service Discovery
AUTOSAR CP R20-11

172 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.18 SdEventHandlerMulticast

SWS Item ECUC_SD_00094 :

Container Name SdEventHandlerMulticast

Parent Container SdEventHandler

Description

The subcontainer including the Routing Group for Activation of Events sent
over Multicast.

The activation ref is also being used for identification of the related Socket
Connection in order to find the Multicast Address used in the Multicast
Option referenced by the Subscribe EventGroup Ack entry.

Configuration Parameters

SWS Item ECUC_SD_00096 :

Name

SdEventActivationRef
Parent Container SdEventHandlerMulticast

Description Reference to a SoAdRoutingGroup for activation of the data path for a
subscribed client (start sending events after subscribe). This is usually
equal to the SdEventActivationRef referenced by SdEventHandlerUdp

Multiplicity 0..1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00118 :

Name

SdMulticastEventSoConRef
Parent Container SdEventHandlerMulticast

Description Reference to the SoAdSocketConnection representing the multicast data
path (UDP).

Multiplicity 1

Type Symbolic name reference to [SoAdSocketConnection]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

173 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.19 SdEventHandlerTcp

SWS Item ECUC_SD_00093 :

Container Name SdEventHandlerTcp

Parent Container SdEventHandler

Description

The subcontainer including the Routing Groups for Activation and Trigger
Transmit for Events sent over TCP.

The activation ref (or triggering ref if no activation ref exists) is also being
used for identification of the related socket connections in order to find the
related client by iterating the SdEventHandlerTcp elements (remote
address statically configured or automatically set by opening TCP
connection before subscription).

Configuration Parameters

SWS Item ECUC_SD_00096 :

Name

SdEventActivationRef
Parent Container SdEventHandlerTcp

Description Reference to a SoAdRoutingGroup for activation of the data path for a
subscribed client (start sending events after subscribe). This is usually
equal to the SdEventActivationRef referenced by SdEventHandlerUdp

Multiplicity 0..1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00095 :

Name

SdEventTriggeringRef
Parent Container SdEventHandlerTcp

Description Reference to a SoAdRoutingGroup that is used for triggered transmit.
Triggering is needed to sent out initial events on the server side after a
client got subscribed.

Multiplicity 0..1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

174 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.20 SdEventHandlerUdp

SWS Item ECUC_SD_00092 :

Container Name SdEventHandlerUdp

Parent Container SdEventHandler

Description

The subcontainer including the Routing Groups for Activation and Trigger
Transmit for Events sent over UDP.

The activation ref (or triggering ref if no activation ref exists) is also being
used for identification of the related socket connections in order to set the
remote address of the client or find the related client by iterating the
SdEventHandlerUdp elements (remote address statically configured or
automatically set by method call before subscription).

Configuration Parameters

SWS Item ECUC_SD_00096 :

Name

SdEventActivationRef
Parent Container SdEventHandlerUdp

Description Reference to a SoAdRoutingGroup for activation of the data path for a
subscribed client (start sending events after subscribe). This is usually
equal to the SdEventActivationRef referenced by SdEventHandlerUdp

Multiplicity 0..1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00095 :

Name

SdEventTriggeringRef
Parent Container SdEventHandlerUdp

Description Reference to a SoAdRoutingGroup that is used for triggered transmit.
Triggering is needed to sent out initial events on the server side after a
client got subscribed.

Multiplicity 0..1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

 Specification of Service Discovery
AUTOSAR CP R20-11

175 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

176 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.21 SdProvidedMethods

SWS Item ECUC_SD_00087 :

Container Name SdProvidedMethods

Parent Container SdServerService

Description
Container element for representing the needed elements of the data path
for the methods provided by the service.

Configuration Parameters

SWS Item ECUC_SD_00090 :

Name

SdServerServiceActivationRef
Parent Container SdProvidedMethods

Description Reference to a SoAdRoutingGroup to activated and deactivate the data
path for methods of the service.

Multiplicity 1

Type Symbolic name reference to [SoAdRoutingGroup]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

No Included Containers

 Specification of Service Discovery
AUTOSAR CP R20-11

177 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

10.2.22 SdServerCapabilityRecord

SWS Item ECUC_SD_00032 :

Container Name SdServerCapabilityRecord

Parent Container SdServerService

Description

Sd uses capability records to store arbitrary name/value pairs conveying
additional information about the named service.

The following use cases are supported:
1) Key present, with no value (e.g. "passreq" -- password required for this
service)

2) Key present, with empty value (e.g. "PlugIns=" server supports plugins,
but none are presently installed)

3) Key present, with non-empty value (e.g.
"PlugIns=JPEG,MPEG2,MPEG4")

Configuration Parameters

SWS Item ECUC_SD_00033 :

Name

SdServerCapabilityRecordKey
Parent Container SdServerCapabilityRecord

Description Defines a CapabilityRecord key.

Multiplicity 1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_SD_00034 :

Name

SdServerCapabilityRecordValue
Parent Container SdServerCapabilityRecord

Description Defines the corresponding CapabilityRecord value.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

 Specification of Service Discovery
AUTOSAR CP R20-11

178 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.23 SdInstanceDemEventParameterRefs

SWS Item ECUC_SD_00120 :

Container Name SdInstanceDemEventParameterRefs

Parent Container SdInstance

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_SetEventStatus in case the corresponding
error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId symbolic value. The standardized
errors are provided in this container and can be extended by vendor-
specific error references.

Configuration Parameters

SWS Item ECUC_SD_00121 :

Name

SD_E_MALFORMED_MSG
Parent Container SdInstanceDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the SD
Instance received malformed messsage.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_SD_00122 :

Name

SD_E_OUT_OF_RES
Parent Container SdInstanceDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the SD
Instance does not have enough resources to handle client.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

 Specification of Service Discovery
AUTOSAR CP R20-11

179 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Scope / Dependency scope: local

SWS Item ECUC_SD_00123 :

Name

SD_E_SUBSCR_NACK_RECV
Parent Container SdInstanceDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when
receiving SubscribeEventgroupNack entry.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.24 SdBlacklistedVersions

SWS Item ECUC_SD_00141 :

Container Name SdBlacklistedVersions

Parent Container SdClientService

Description
Collection of blacklisted versions.
Tags:
atp.Status=draft

Post-Build Variant
Multiplicity

true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

SWS Item ECUC_SD_00142 :

Name

SdBlacklistedMinorVersions
Parent Container SdBlacklistedVersions

Description Blaclisted MinorVersions.
Tags:
atp.Status=draft

Multiplicity 0..*

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

 Specification of Service Discovery
AUTOSAR CP R20-11

180 of 180 Document ID 616: AUTOSAR_SWS_ServiceDiscovery

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 AUTOSAR BSW Scheduler
	5.2 AUTOSAR BSW Mode Manager
	5.3 AUTOSAR Socked Adaptor
	5.4 AUTOSAR Default Error Tracer
	5.5 AUTOSAR Diagnostic Event Manager
	5.6 File structure
	5.6.1 Code file structure
	5.6.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Background & Rationale
	7.2 Requirements
	7.2.1 General requirements
	7.2.2 Ethernet Communication
	7.2.3 State Handling
	7.2.4 Interaction with Socket Adaptor
	7.2.5 Subscribe Eventgroup retry handling

	7.3 Message format
	7.3.1 Request ID
	7.3.2 Protocol Version field
	7.3.3 Interface Version field
	7.3.4 Message Type field
	7.3.5 Return Code field
	7.3.6 Flags field
	7.3.7 Reserved field
	7.3.8 Entries Array
	7.3.8.1 Length of Entries Array
	7.3.8.2 Entry Format Type 1
	7.3.8.3 Entry Format Type 2

	7.3.9 Options Array
	7.3.9.1 Configuration Option
	7.3.9.2 IPv4 Endpoint Option
	7.3.9.3 IPv6 Endpoint Option
	7.3.9.4 IPv4 Multicast Option
	7.3.9.5 IPv6 Multicast Option
	7.3.9.6 IPv4 SD Endpoint Option
	7.3.9.7 IPv6 SD Endpoint Option
	7.3.9.8 Handling missing, redundant, and conflicting Options
	7.3.9.9 Security considerations for Options

	7.3.10 Entries referencing Options

	7.4 Service Discovery Entry Types
	7.4.1 Entries for Services (common requirements)
	7.4.2 FindService entry
	7.4.3 OfferService entry
	7.4.4 Building OfferService entries
	7.4.5 StopOfferService entry
	7.4.6 Eventgroup Entries (Common requirements)
	7.4.7 SubscribeEventgroup entry
	7.4.8 StopSubscribeEventgroup entry
	7.4.9 SubscribeEventgroupAck entry
	7.4.10 SubscribeEventgroupNack entry
	7.4.11 Building SubscribeEventgroup entries

	7.5 Sending and Receiving of Messages
	7.5.1 Sequence for message transmission
	7.5.2 Sequence for message reception
	7.5.3 Receiving Entries
	7.5.3.1 Receiving Entries using Multicast

	7.6 Timings and repetitions for Server Service and Event Handlers
	7.6.1 Initial Wait Phase for Server Services
	7.6.2 Repetition Phase for Server Services
	7.6.3 Main Phase for Server Services
	7.6.4 Fan out control
	7.6.5 Sharing of SdServerTimer

	7.7 Timings and repetitions for Client Service and Consumed Eventgroups
	7.7.1 Down Phase for Client Services
	7.7.2 Initial Wait Phase for Client Services
	7.7.3 Repetition Phase for Client Services
	7.7.4 Main Phase for Client Services
	7.7.5 Fan in control
	7.7.6 Sharing of SdClientTimer

	7.8 Handling of SdServiceGroupS
	7.8.1 SdServiceGroup definitions
	7.8.1.1 Initialization of SdServiceGroupS
	7.8.1.2 Starting of SdServiceGroupS
	7.8.1.3 Stopping of SdServiceGroupS

	7.9 Extended Production Errors
	7.10 Error classification
	7.10.1 Development Errors
	7.10.2 Runtime Errors
	7.10.3 Transient Faults
	7.10.4 Production Errors
	7.10.5 Extended Production Errors

	8 API specification
	8.1 Imported Types
	8.2 Type definitions
	8.2.1 Sd_ConfigType
	8.2.2 Sd_ServerServiceSetStateType
	8.2.3 Sd_ClientServiceSetStateType
	8.2.4 Sd_ConsumedEventGroupSetStateType
	8.2.5 Sd_ClientServiceCurrentStateType
	8.2.6 Sd_ConsumedEventGroupCurrentStateType
	8.2.7 Sd_EventHandlerCurrentStateType
	8.2.8 Sd_ConfigOptionStringType
	8.2.9 Sd_ServiceGroupIdType

	8.3 Function definitions
	8.3.1 Sd_Init
	8.3.2 Sd_GetVersionInfo
	8.3.3 Sd_ServerServiceSetState
	8.3.4 Sd_ClientServiceSetState
	8.3.5 Sd_ConsumedEventGroupSetState
	8.3.6 Sd_LocalIpAddrAssignmentChg
	8.3.7 Sd_SoConModeChg
	8.3.8 Sd_ServiceGroupStart
	8.3.9 Sd_ServiceGroupStop

	8.4 Call-back notifications
	8.4.1 Sd_RxIndication

	8.5 Scheduled functions
	8.5.1 Sd_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces
	8.6.3.1 Sd_CapabilityRecordMatchCallout

	9 Sequence diagrams
	9.1 CLIENT / SERVER: Sd_RxIndication
	9.2 SERVER: Response Behavior
	9.3 CLIENT: Response Behavior
	9.4 SERVER: buildOfferServiceEntry
	9.5 CLIENT: buildSubscribeEventgroupEntry
	9.6 SERVER: buildSubscribeEventgroupAckEntry
	9.7 CLIENT / SERVER: TransmitSdMessage
	9.8 SERVER: AddClientToFanOut
	9.9 SERVER: Start
	9.10 CLIENT: Start

	10 Containers and configuration parameters
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Sd
	10.2.2 SdGeneral
	10.2.3 SdConfig
	10.2.4 SdCapabilityRecordMatchCallout
	10.2.5 SdInstance
	10.2.6 SdServiceGroup
	10.2.7 SdClientTimer
	10.2.8 SdServerTimer
	10.2.9 SdInstanceTxPdu
	10.2.10 SdInstanceMulticastRxPdu
	10.2.11 SdInstanceUnicastRxPdu
	10.2.12 SdServerService
	10.2.13 SdClientService
	10.2.14 SdClientCapabilityRecord
	10.2.15 SdConsumedEventGroup
	10.2.16 SdConsumedMethods
	10.2.17 SdEventHandler
	10.2.18 SdEventHandlerMulticast
	10.2.19 SdEventHandlerTcp
	10.2.20 SdEventHandlerUdp
	10.2.21 SdProvidedMethods
	10.2.22 SdServerCapabilityRecord
	10.2.23 SdInstanceDemEventParameterRefs
	10.2.24 SdBlacklistedVersions

	10.3 Published Information

